
Optimizing Task Migration Decisions in
Vehicular Edge Computing Environments

Ziqi Zhou∗, Youming Tao∗, Agon Memedi∗, Chunghan Lee†, Seyhan Ucar†,
Onur Altintas†, and Falko Dressler∗

∗ School of Electrical Engineering and Computer Science, TU Berlin, Germany
† InfoTech Labs, Toyota Motor North America R&D, CA, U.S.A.

Email: {zhou, tao, memedi, dressler}@ccs-labs.org, {chunghan.lee1, seyhan.ucar, onur.altintas}@toyota.com

Abstract—Vehicular networks are undergoing rapid trans-
formations that require efficient and reliable management of
computational tasks. Edge computing is supposed to provide
these resources with minimal delay. The concept of vehicular
micro clouds (VMCs) offers such services through collection
among the vehicles, creating a virtual edge server. Within the
VMC framework, the efficient migration of computational tasks
among vehicles stands as a foundational yet intricate challenge.
In this paper, we propose a novel task migration mechanism
that leverages both task scheduling and offloading techniques to
achieve this objective. Our mechanism mainly consists of two
algorithmic modules: (1) task scheduling that prioritizes the tasks
according to the earliest deadline first (EDF) principle before
offloading decisions and (2) task offloading that assigns each task
to the most appropriate vehicle according to the completion time
optimization. As a particular feature, we consider the dwell time
of cars, i.e., the estimated time vehicles stay within the VMC. We
conduct extensive simulations to evaluate the impact of various
parameters on task performance, such as data rate, traffic density,
computing capacities, and computational demands. Our research
advances the state-of-the-art in intelligent transportation system
(ITS) by revealing the operational benefits of task migration in
the VMC.

Index Terms—virtualized edge computing, task offloading,
resource scheduling, task migration, vehicular micro cloud

I. INTRODUCTION

The rapid development of vehicle-to-everything (V2X)
communication [1, 2] and continuously increasing computing
power of vehicles act as enablers for next generation intelligent
transportation system (ITS) solutions. Together with advanced
cellular V2X (C-V2X) communication services, 5G also
introduced the concept of mobile edge computing (MEC) [3,
4]. Edge computing allows to offload computational tasks to
edge servers for fast processing with very low communication
latencies [5–8]. Given the limited deployment of MEC and
also to enhance the set of features available, virtualized edge
computing offers new capabilities, particularly focusing on next
generation 6G networks [9]. Such virtalized edge computing
is, for example, one of the main building blocks for metaverse
applications including virtual reality and cooperative sensing
[10–15].

In the vehicular context, the concept of vehicular micro
clouds (VMCs) allows the grouping of vehicles into small
clusters, which virtually provides edge computing services on
the road [16, 17]. Vehicles participating in such clusters share
data among each other via direct V2X communication. The

next obvious step is to fully use the computational resources
of modern self-driving cars for advanced ITS applications and
even full-scale smart cities [18–20].

One of the core features of a VMC is a task migration
mechanism that enables the dynamic allocation of computa-
tional tasks among vehicles and edge servers. If the computing
tasks generated by each vehicle can be easily processed locally,
both computational resources at the virtual edge server as well
as communication resources can be saved. However, vehicles
with weak computing power may not be able to finish all these
tasks within the deadline, while vehicles with strong computing
power may often be idle. Therefore, we consider migrating
computing tasks between vehicles to improve the utilization
of computing resources and to accelerate task processing
to meet relevant deadlines. With the adaptation of network
resource allocation and operational efficacy, the requirements
of numerous time-sensitive tasks can thus be satisfied.

However, achieving a reasonable task redistribution among
vehicles in a VMC via task migration faces many challenges.
Firstly, compared with fully local computing, task migration
introduces additional time costs caused by communication via
wireless channels. How to optimally balance the costs incurred
from communication and computation for better task processing
efficiency is still not clear. Secondly, due to the mobility of
vehicles, the decision-making procedure needs to take into
account not only the existing resources in a VMC, but also
the availability of these resources in the future.

In this paper, we present an efficient decision algorithm
for task migration in a VMC. Our mechanism enhances task
migration by alternately invoking two algorithm modules: (1) a
task scheduling module and (2) a task offloading module. The
task scheduling module sorts all the computing tasks that have
not been offloaded according to the earliest deadline first (EDF)
principle. That is, the task with the earliest completion deadline
will be given the highest priority for offloading. For each task
to be offloaded, the task offloading module greedily assigns
it to the vehicle that minimizes the expected task completion
time. The module considers the so-called dwell time of a car,
i.e., the estimated remaining time it will be available in the
VMC [21].

In order to assess the performance of our system, we con-
ducted a thorough simulation-based analysis of task migration.
We particularly focus on the impact of the traffic density and



the possible data rate of the C-V2X communication channel.
Computational capabilities and demands are modeled according
to adequate probability distributions. We were mainly interested
in performance metrics like the task completion time, the
lateness, and the failure rate.

Our main contributions can be summarized as follows:
• We present a novel task allocation algorithm for migration

decisions in vehicular edge computing.
• We thoroughly evaluate the algorithm focusing on task

completion time, lateness, and failure rate.

II. PROBLEM FORMULATION

In the following, we introduce the system model as well as
the main problem of task migration.

A. Overview of Vehicular Micro Clouds

A vehicular micro cloud represents a number of cars that
is in physically close proximity and acts as a virtual edge
server to nearby users [16, 17]. We consider a VMC anchored
at a fixed geographical region, e.g., any cars in a particular
intersection can be part of the VMC. All these existing
vehicles have the ability to generate a variable number of
heterogeneous computational tasks, each with random data
sizes, varying execution complexities, and deadlines. Without
loss of generality, we assume that the time is discretized into
slots, denoted as t = 0, 1, . . ., where each slot lasts for a unit
duration of time. The vehicles in the VMC aim to collaborate
with each other, forming a virtual edge server, to complete
these computational tasks. The VMC also provides central
coordination. In general, the central controller can be any
entity with knowledge about computational tasks and vehicle
resources in the cloud.

B. Vehicle Model

Due to the mobility of vehicles, the memberships size of
the VMC can vary rapidly over time. We use Mt to denote
the number of vehicles in each time slot t. Moreover, we
associate each vehicle i a pair of time slot indices (tini , touti )
to indicate when it joins or leaves the VMC, respectively. For
each vehicle, we assume that the task generation follows an
uniform arrival process. That is, at the beginning of each time
slot, the number of newly generated tasks at each vehicle
follows a uniform distribution over a bounded range of [n, n],
where n, n ∈ N+ are assumed to be public prior knowledge.
Therefore, the number of total tasks generated in each time
slot t is proportional to the vehicle number Mt. Moreover,
the vehicles are equipped with different compute capabilities,
determined by their different CPUs. In this paper, we measure
the computing capability of the vehicles in million instructions
per second (MIPS).

C. Task Model

We consider a heterogeneous task setting, that is, compu-
tational tasks have distinct computing complexities and are
associated with different data sizes and completion deadlines.
We describe task complexity by million instructions (MI) to

compete the job. Furthermore, the task data size measures the
amount of data needed during the execution of the task. Thus,
the larger the data size is, the more communication time will be
consumed when we migrate the task from a vehicle to another
one.

D. Central Controller Model

In this paper, the central controller is the entity that performs
the task scheduling and offloading decisions. Information
about all vehicles in the VMC is collected leveraging beacons
broadcast periodically from vehicles. The central controller
thus has the global knowledge of the vehicles and tasks in
the VMC. In particular, when a vehicle joins the micro cloud,
it informs the controller about its computational power. The
controller also knows if a vehicle is no longer part of the
cloud. This can be achieved if the controller loses connection
to the vehicle or if the vehicle sends a beacon when it leaves
the cloud. The controller, however, does not know the future
dynamics of the micro cloud. The information about newly
generated tasks, including the task complexity and data size,
is also updated to the controller in each time slot. Thus, the
controller has knowledge about the current cars in the micro
cloud, their processing capabilities, and the requirements of
the remaining tasks in the system. It should be noted that the
notion of a central controller does not have to be a part of an
infrastructure, e.g., edge server. Rather, the controller can be
referred to as any entity that has knowledge about the tasks
and the current status of the VMC, e.g., a vehicle with such
knowledge in the VMC can do the task allocation.

E. Task Migration Setup and Objective

The central controller sequentially assigns each newly
generated task to the vehicle that will execute the task. After
the assignment is made, the task will be migrated from the
source vehicle to the target vehicle immediately unless the
controller decides to have the task executed locally. Once
the task arrives at the assigned vehicle, it enters the waiting
queue for execution. Therefore, the runtime status of each task
comprises: {generation, communication, waiting, processing}.
Since each task will be assigned by the controller in the
immediate next slot of the one when it is generated, we
disregard the time from generation to migration, and mainly
consider the time costs Tk of each task k as the sum of the
time duration spent for communication T c

k , waiting Tw
k , and

processing T p
k , i.e., Tk ≜ Tw

k + T c
k + T p

k .
Ideally, one would like to minimize the total time spent

for completing each task, i.e., Tk. However, from a system
perspective, this is impractical, because there is resource
competition between tasks. Therefore, in this paper, we aim
to minimize the average task completion time in VMC, i.e.,
1
Nt

∑Nt

k=1 Tk, where Nt is the number of all tasks up to time
slot t.

F. Formal Definitions of Main Concepts

Let VMC = {Veh,Tsk} be a vehicular micro cloud with
Veh being the set of existing vehicles and Tsk being the set



of unfinished tasks. Note that both Veh and Tsk change over
time slots. Without loss of generality, we use Veh(i) to denote
the i-th vehicle in Veh and use Tsk(k) to denote the k-th tasks
in Tsk.

For each Veh(i), we use a 3-tuple to describe it, which
includes its joining time tjoin(i), leaving time tleave(i) and its
computing capability MIPS(i). That is,

Veh(i) = (tjoin(i), tleave(i),MIPS(i)). (1)

For each Tsk(k), we use a 6-tuple to describe it, which
includes its generating time tgen(k), completion deadline
tddl(k), complexity MI(k), data size S(k), its source vehicle
(generator) index g(k) and its processor index p(k). That is

Tsk(k) = (tgen(k), tddl(k),MI(k), S(k), g(k), p(k)). (2)

We now refine some notations we used in the last section.
Let T c(k, j) be the communication time of Tsk(k) used for
migrating from Veh(g(k)) to j. Let the transmission rate be
R, which is supposed to be the same in the VMC. Then for
any Tsk(k), we have

T c(k, j) =

{
0, if g(k) = j
S(k)
R , otherwise.

(3)

Let T p(k, j) be the time interval of the execution of Tsk(k)
if it is processed by Veh(j), which can be described as follows,

T p(k, j) =
MI(k)

MIPS(j))
(4)

Let Tw(k, t, j) be the delay of Tsk(k) waiting for execution
if processed by Veh(j) start from time slot t. Suppose Veh(j)
has the task queue of Tsk(k1), · · · ,Tsk(kq), where Tsk(k1) is
under processing and the other tasks are waiting for execution,
then

Tw(k, t, j) =
(1− αj,t)MI(k1)

MIPS(j)
+

q∑
κ=2

T p(kκ), (5)

where αi,t implies the proportion of instructions that has been
finished for processing Tsk(k1) till time slot t.

At last, we provide a concrete example based on data
analysis task to further illustrate our models and settings, and
to conclude this section.

Example 1. Task Completion Time Calculation
For instance, a typical analysis task with a 10 MB data size and
2000 MI task complexity is generated by a car, and the current
wireless channel is supported by sub-6 GHz 5G technology
with a 100 Mbps Data Rate[22]. The Oracle offloads the task
to an idle car that has 4000 MIPS computing capability. The
predictive completion time of this task is the following.

• Scenario: Analyzing sensor data for anomalies.
• Task Data Size: 10 MB = 8× 107 bits
• Result Size: 10 KB = 8× 104 bits
• Data Rate: 100 Mbps = 108 bit/s
• Task Complexity: 2000 MI
• Computing Capability: 4000 MIPS

Algorithm 1 Task Pre-scheduling Algorithm
Input: Unassigned task list L
Output: A re-ordered list L′

1: Sort tasks in L in increasing order based on deadlines
2: Return the sorted list

• Processing Time: For 2 × 109 instructions with 4000
MIPS computation ability, processing time = 2×109

4×109 = 0.5
seconds.

• Up-Migration Time: For 10 MB data over a 100 Mbps
link, migration time = 8×107 bit

108bit/s = 0.8 seconds.
• Down-Migration Time: For 1 MB data over a 100 Mbps

link, migration time = 8×104 bit
108bit/s = 0.0008 seconds.

• Completion Time: Without considering the potential wait-
ing time, the sum of the other components is 0.5 + 0.8 +
0.0008 ≈ 1.3s

The down-migration time is usually relatively negligible (less
than 10−3 of the up-migration delay) and thus is omitted in
the calculation.

III. OUR TASK MIGRATION DECISION METHOD

In the following, we describe and discuss our new task
migration decision technique. It consists of two parts: task
pre-scheduling and task migration.

A. Task Pre-Scheduling

A crucial balance between fairness and efficiency must be
acknowledged in task migration research. However, these two
factors are not necessarily mutually exclusive.

Since our algorithm operates in a sequential rather than a
parallel processing system, all decisions are made one at a
time. Therefore, it’s essential to maintain a logical order in
the inputs, ensuring that our calculations are both efficient and
equitable.

We decided to pre-schedule tasks in a logical order before
they are offloaded through a second algorithm. This approach
contrasts with first-come first-served (FCFS), where tasks are
processed in the order they arrive, as it moves tasks with earlier
deadlines to the front of the queue before the task offloading
process begins. Compared to EDF, our pre-scheduling strategy
does not disrupt the sequence of tasks already offloaded,
avoiding recalculations that could decrease efficiency and render
previous decisions obsolete.

Our pre-scheduling strategy (cf. Algorithm 1) is particularly
effective in dynamic environments and improves overall
efficiency and task success rates1 by prioritizing urgent tasks for
resource allocation over less urgent ones, provided the tasks
have not yet been offloaded. The earlier a task is assigned
resources, the more likely it is to be completed on time,
reducing the risk of missing deadlines and thereby improving
overall system performance.

1Task success rate is defined as the proportion of tasks completed before
their deadlines.



Algorithm 2 Task Migration Algorithm
Input: initial car set Veh and task set Tsk.

1: for time slots t← 1, 2, · · · do
2: for each Veh(i) in the latest Veh do (in parallel)
3: Report the newly generated and historical task

information
4: end for
5: Controller forms the list of unassigned tasks L
6: Controller obtains sorted list L′ via Algorithm 1
7: for each Tsk(k) in L′ do
8: for all Veh(j) in Veh do
9: T (k, j)← T c(k, j) + T p(k, j) + Tw(k, t, j)

10: end for
11: Find vehicles able to complete Tsk(k) fastest:

OPT(k)← argmin
j

T (k, j)

12: if g(k) ∈ OPT(k) then
13: p(k)← g(k)
14: else
15: Find j∗ ∈ OPT(k) s.t. Veh(j∗) has the least

workload
16: p(k)← j∗

17: end if
18: end for
19: end for

B. Task Offloading Decision

Our algorithm to make offloading decisions is depicted in
Algorithm 2. First, it initializes the migration system, sets
the current time to zero, and starts the task generation of
each car. In each time step, all the newly generated tasks are
added to a pre-scheduled list and sorted based on deadlines
for further processing. All the tasks are processed based on
their completion time according to the pre-scheduled list order.
The completion time includes the local one and the migration
ones. The former is the sum of the processing time (T p)
and the waiting time (Tw), while the latter also adds the
additional communication overhead (T c) with the iteration on
other current existing cars. In addition, we check the estimated
dwell time of both the car generating the task as well as of the
candidate for migration, i.e., both need to be part of the same
VMC at task generation time as well as at the anticipated task
completion time. The shortest migration completion times and
corresponding cars will be collected and the car that has the
least workload will be marked as the best migration destination.

IV. SIMULATION AND ANALYSIS

In order to assess the performance of the presented task
scheduling and migration technique, we performed a thorough
simulation-based analysis.

A. Scenario

Without loss of generality, we use a basic intersection
mobility scenario to study our algorithms. This scenario

contains a single traffic light, four entry points, and 16 possible
routes, including straight paths, right turns, left turns, and U-
turns. The map covers an area of approximately 400× 400m2,
featuring two 400-meter perpendicular lanes, as depicted in
Figure 1. Trips were generated using the SUMO random trip
generator, which allows for flexible control over car generation
periods, thereby affecting car density.

After generating car patterns with three different traffic
density levels (cf. Figure 2), the simulation is run to record
mobility traces. These traces contain important characteristics
such as the total number of cars, average speed, average
duration of car presence on the map, simulation duration, car
generation period, and tracking time step. Further details on
the simulation setup are provided in Table I.

B. Task Migration Implementation

Building upon our migration approach and two baseline
methods—no migration and migration without considering
dwell time within the VMC scope, we implement the system
in form of a Python program. Table II provides an overview of
the key parameters and settings employed in our experimental
setup. Several key settings determine how tasks are processed
and migrated among vehicles. The computational power of
each vehicle is assumed to be uniformly distributed in the
range 1–5 MIPS. Tasks have deadlines in the range 2–3 s, and
their data sizes vary in the range 1–10 MB. The computational
complexity of tasks spans from 1,000–5,000 MI. Each vehicle
generates uniformly distributed tasks between 0–3 tasks per

Figure 1. Intersection Scenario

Table I
ROAD TRAFFIC SIMULATION PARAMETERS FOR SUMO

Parameter Low Med High

Total number of cars 480 900 1200
Average speed [km/h] 27.86 25.74 21.20
Average dwell time [s] 865.16 1002.77 887.46
Simulation duration [s] 3600 3600 3600
Car generation period [s] 7.5 4 3
Tracking Time Step [s] 1 1 1



High density Medium density Light density0

5

10

15

20
Ca

r N
um

be
rs

Figure 2. Average number of cars per time step

Table II
TASK MIGRATION SETTINGS

Description Value

Computer CPU [MIPS] U(1, 5)
Task Deadline [s] U(2, 3)
Task Data size [MB] U(1, 10)
Task execution complexity [MI] U(1000, 5000)
Number of tasks generated per time step per car U(0, 3)
Data Rate [Mbps] 1 - 500

time-step. The data rate for wireless communication and task
migration is varying between 1–500 Mbit/s.

C. Experimental Results and Discussion

Figures 3 to 5 show the obtained results from our simulations
for average task completion time, average task lateness rate,
and average task failure rate, respectively. All figures plot three
strategies. We use "no migration" as a baseline, which we
compare our solution with. We also study the impact of the
knowledge of the dwell time in all experiments. These results
are labeled "migration without dwell time" and "migration with
dwell time", respectively. For all three measures, we varied
both the communication data rate as well as the traffic density.
In the following, we discuss the impact of both measures
separately.

1) Impact of Data Rate: The average task completion delay
is the most straightforward metric illustrated in the plots. No
migration approach remains consistently high and relatively
stable as the data rate changes, which aligns with expectations,
i.e., local execution should not be influenced by wireless
channel conditions. Both migration approaches, with and
without dwell time, show a sharp decrease in completion delay
as the data rate increases from 1–100 Mbit/s and then a more
gradual decline from 100–500 Mbit/s. The initial significant
decrease in completion delay for the migration strategies is
attributed to improved transmission conditions, enabling remote
processing to save considerable time. In the second regime,
where data rates exceed 100 Mbit/s, the gap between the
migration approaches and no migration remains larger, though
additional gains in performance are limited. This is because
the transmission cost becomes negligible once the data rate

0 100 200 300 400 500
Data Rate (Mbps)

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Av
er

ag
e 

Ta
sk

 C
om

pl
et

io
n 

Ti
m

e 
(s

)

Migration with Dwell Time
Migration without Dwell Time
No Migration

(a) Light traffic density

0 100 200 300 400 500
Data Rate (Mbps)

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Av
er

ag
e 

Ta
sk

 C
om

pl
et

io
n 

Ti
m

e 
(s

)

Migration with Dwell Time
Migration without Dwell Time
No Migration

(b) Medium traffic density

0 100 200 300 400 500
Data Rate (Mbps)

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Av
er

ag
e 

Ta
sk

 C
om

pl
et

io
n 

Ti
m

e 
(s

)

Migration with Dwell Time
Migration without Dwell Time
No Migration

(c) High traffic density

Figure 3. Average task completion time

surpasses a certain threshold, likely around 100 Mbit/s, leading
to minimal room for further optimization through reduced
transmission times.

The lateness rate is an indicator of the proportion of tasks
completed after their deadlines. No migration approach consis-
tently underperforms, maintaining a high lateness rate of around
more than one-third, regardless of wireless communication
conditions. Migration without dwell time shows improvement
as the data rate increases, indicating that better communication
can positively impact task completion times if there exist task
migration options. However, our migration strategy with dwell
time consideration outperforms both baselines in most scenarios,
achieving a lateness rate of approximately 20% to 25%. This



0 100 200 300 400 500
Data Rate (Mbps)

20

25

30

35

40
La

te
ne

ss
 R

at
e 

(%
)

Migration with Dwell Time
Migration without Dwell Time
No Migration

(a) Light traffic density

0 100 200 300 400 500
Data Rate (Mbps)

17.5

20.0

22.5

25.0

27.5

30.0

32.5

35.0

La
te

ne
ss

 R
at

e 
(%

)

Migration with Dwell Time
Migration without Dwell Time
No Migration

(b) Medium traffic density

0 100 200 300 400 500
Data Rate (Mbps)

22.5

25.0

27.5

30.0

32.5

35.0

37.5

40.0

La
te

ne
ss

 R
at

e 
(%

)

Migration with Dwell Time
Migration without Dwell Time
No Migration

(c) High traffic density

Figure 4. Average task lateness rate

lower rate suggests that our approach’s additional consideration
of dwell time in the VMC scope contributes to more efficient
task offloading and reduced delays in environments with
varying car density and wireless communication conditions.
The only exception occurs in the light-density scenario, where
there are fewer cars available to act as servers, leading to
some fluctuation in performance. Despite this variability, our
approach rarely performs worse than either of the baseline
strategies, indicating that even with a smaller pool of available
resources, our method maintains competitive efficiency and
effectiveness. This resilience underscores the adaptability of our
approach in varying traffic density conditions while continuing
to outperform baseline strategies in terms of task lateness.

0 100 200 300 400 500
Data Rate (Mbps)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fa
ilu

re
 R

at
e 

(%
)

Migration with Dwell Time
Migration without Dwell Time
No Migration

(a) Light traffic density

0 100 200 300 400 500
Data Rate (Mbps)

0.0

0.1

0.2

0.3

0.4

0.5

Fa
ilu

re
 R

at
e 

(%
)

Migration with Dwell Time
Migration without Dwell Time
No Migration

(b) Medium traffic density

0 100 200 300 400 500
Data Rate (Mbps)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fa
ilu

re
 R

at
e 

(%
)

Migration with Dwell Time
Migration without Dwell Time
No Migration

(c) High traffic density

Figure 5. Average task failure rate

The failure rate is a key metric in system performance
analysis. While lateness indicates that tasks are delayed but
still completed, failure rate implies a more severe problem
where task results are entirely lost, because the processor car
has moved out of the VMC with the generator at the moment of
task completion. In no migration method, failure is theoretically
impossible because the processor and generator are always the
same car. Our system maintains a zero failure rate across all
data rates because one of the preconditions for migration is
that both vehicles must remain in the VMC scope. Migration
without dwell introduces a non-zero failure rate, albeit at a
low level of less than 0.4%. While this might seem negligible,
it poses a potential risk due to the possibility of processors



moving out of range during task execution. Additionally, if the
number of tasks is large, even a small failure rate could lead
to a significant number of tasks failing, which is undesirable.
Given a strict adherence to a zero-tolerance policy for failure,
our approach is the best in reliability and success rate.

2) Impacts of Traffic Density: Regardless of the car density,
our algorithm consistently outperforms the two baseline ap-
proaches, except in one case: the migration approach without
dwell time also shows competitive performance in terms of
average task completion time.

Considering the outcomes observed across three density
modes, it is only the lateness metric in the high-density scenario
that exhibits a noticeable yet slight variation, which could
be attributed to randomness or fluctuation, especially when
the car number is limited. The simulation results suggest
that car density does not significantly affect the average task
completion time, task lateness rate, or task failure rate. The
likely explanation for this observation is that the cars function
both as users and service providers. As the number of tasks is
approximately proportional to the number of cars, the average
task rate per car appears to have a greater impact on these
metrics than the density of cars alone.

V. CONCLUSION

Following the general concepts of next generation virtualized
edge computing, in this paper, we proposed a novel task
migration mechanism that leverages both task scheduling and
offloading techniques to achieve this objective. Our algorithm
is designed to operate in the context of vehicular micro clouds,
i.e., a specific vehicular communication scenario, in which
vehicles share both computational and communication resources
to achieve both individual as well as shared goals such as
cooperative processing of sensor data or the training of machine
learning models. All of which are fundamental building blocks
for next generation metaverse applications. Our task migration
strategy employs a greedy algorithm that is based on two
components: first, a EDF-inspired pre-scheduling of new tasks
and, second, a migration decision based on the task completion
time as well as the anticipated dwell time of a vehicle in
the VMC. First simulation results focusing on the impact of
traffic density and communication data rate demonstrate the
feasibility of our solution. In future work, we aim to incorporate
more realistic elements such as realistic traffic models into our
simulations and further refine our model. It is also interesting
to investigate the possibility of securing our mechanism with
blockchain-based protocols, such as [23].

REFERENCES

[1] C. Sommer and F. Dressler, Vehicular Networking. Cambridge University
Press, 2014.

[2] Z. MacHardy, A. Khan, K. Obana, and S. Iwashina, “V2X Access
Technologies: Regulation, Research, and Remaining Challenges,” IEEE
Communications Surveys & Tutorials, vol. 20, no. 3, pp. 1858–1877,
2018.

[3] P. Mach and Z. Becvar, “Mobile Edge Computing: A Survey on
Architecture and Computation Offloading,” IEEE Communications
Surveys & Tutorials, vol. 19, no. 3, pp. 1628–1656, Mar. 2017.

[4] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A Survey
on Mobile Edge Computing: The Communication Perspective,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,
Oct. 2017.

[5] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A Survey of Computation
Offloading for Mobile Systems,” ACM/Springer Mobile Networks and
Applications, vol. 18, no. 1, pp. 129–140, Feb. 2013.

[6] D. Xu, Y. Li, X. Chen, J. Li, P. Hui, S. Chen, and J. Crowcroft, “A
survey of opportunistic offloading,” IEEE Communications Surveys &
Tutorials, vol. 20, no. 3, pp. 2198–2236, 2018.

[7] Q.-H. Nguyen and F. Dressler, “A Smartphone Perspective on Com-
putation Offloading – A Survey,” Elsevier Computer Communications,
vol. 159, pp. 133–154, Jun. 2020.

[8] C. Jiang, X. Cheng, H. Gao, X. Zhou, and J. Wan, “Toward Computation
Offloading in Edge Computing: A Survey,” IEEE Access, vol. 7,
pp. 131 543–131 558, Jan. 2019.

[9] F. Dressler, C. F. Chiasserini, F. H. P. Fitzek, H. Karl, R. Lo Cigno,
A. Capone, C. E. Casetti, F. Malandrino, V. Mancuso, F. Klingler, and
G. A. Rizzo, “V-Edge: Virtual Edge Computing as an Enabler for Novel
Microservices and Cooperative Computing,” IEEE Network, vol. 36,
no. 3, pp. 24–31, May 2022.

[10] K. Li, Y. Cui, W. Li, T. Lv, X. Yuan, S. Li, W. Ni, M. Simsek, and
F. Dressler, “When Internet of Things meets Metaverse: Convergence of
Physical and Cyber Worlds,” IEEE Internet of Things Journal, vol. 10,
no. 5, pp. 4148–4173, Mar. 2023.

[11] Y. Wang, Z. Su, N. Zhang, R. Xing, D. Liu, T. H. Luan, and X. Shen,
“A Survey on Metaverse: Fundamentals, Security, and Privacy,” IEEE
Communications Surveys & Tutorials, vol. 25, no. 1, pp. 319–352, 2023.

[12] D. C. Selvaraj, F. Dressler, and C. F. Chiasserini, “Human-Centered
Traffic Management Supporting Smart Cities and the Metaverse,” in
IEEE International Conference on Metaverse Computing, Networking
and Applications (MetaCom 2023), Kyoto, Japan: IEEE, Jun. 2023,
pp. 163–168.

[13] H. Wang, H. Ning, Y. Lin, W. Wang, S. Dhelim, F. Farha, J. Ding, and
M. Daneshmand, “A Survey on the Metaverse: The State-of-the-Art,
Technologies, Applications, and Challenges,” IEEE Internet of Things
Journal, vol. 10, no. 16, pp. 14 671–14 688, Aug. 2023.

[14] E. Krijestorac, A. Memedi, T. Higuchi, S. Ucar, O. Altintas, and D.
Čabrić, “Hybrid Vehicular and Cloud Distributed Computing: A Case for
Cooperative Perception,” in IEEE Global Communications Conference
(GLOBECOM 2020), Taipei, Taiwan: IEEE, Dec. 2020.

[15] G. Qiao, S. Leng, K. Zhang, and Y. He, “Collaborative Task Offloading
in Vehicular Edge Multi-Access Networks,” IEEE Communications
Magazine, vol. 56, no. 8, pp. 48 –54, Aug. 2018.

[16] T. Higuchi, J. Joy, F. Dressler, M. Gerla, and O. Altintas, “On the
Feasibility of Vehicular Micro Clouds,” in 9th IEEE Vehicular Networking
Conference (VNC 2017), Turin, Italy: IEEE, Nov. 2017, pp. 179–182.

[17] F. Dressler, G. S. Pannu, F. Hagenauer, M. Gerla, T. Higuchi, and
O. Altintas, “Virtual Edge Computing Using Vehicular Micro Clouds,”
in IEEE International Conference on Computing, Networking and
Communications (ICNC 2019), Honolulu, HI: IEEE, Feb. 2019.

[18] J. Zhang, F.-Y. Wang, K. Wang, W.-H. Lin, X. Xu, and C. Chen, “Data-
Driven Intelligent Transportation Systems: A Survey,” IEEE Transactions
on Intelligent Transportation Systems, vol. 12, no. 4, pp. 1624–1639,
Dec. 2011.

[19] M. Veres and M. Moussa, “Deep Learning for Intelligent Transportation
Systems: A Survey of Emerging Trends,” IEEE Transactions on
Intelligent Transportation Systems, vol. 21, no. 8, pp. 3152–3168, Aug.
2020.

[20] L. U. Khan, I. Yaqoob, N. H. Tran, S. M. A. Kazmi, T. N. Dang, and
C. S. Hong, “Edge-Computing-Enabled Smart Cities: A Comprehensive
Survey,” IEEE Internet of Things Journal, vol. 7, no. 10, pp. 10 200–
10 232, Oct. 2020.

[21] G. S. Pannu, S. Ucar, T. Higuchi, O. Altintas, and F. Dressler, “Dwell
Time Estimation at Intersections for Improved Vehicular Micro Cloud
Operations,” Elsevier Ad Hoc Networks, vol. 122, p. 102 606, Nov. 2021.

[22] M. Cantero, S. Inca, A. Ramos, M. Fuentes, D. Martín-Sacristán, and
J. F. Monserrat, “System-Level Performance Evaluation of 5G Use Cases
for Industrial Scenarios,” IEEE Access, vol. 11, pp. 37 778–37 789, 2023.

[23] M. Xu, F. Zhao, Y. Zou, C. Liu, X. Cheng, and F. Dressler, “BLOWN: A
Blockchain Protocol for Single-Hop Wireless Networks under Adversarial
SINR,” IEEE Transactions on Mobile Computing, vol. 22, no. 8,
pp. 4530–4547, Aug. 2023.


