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Abstract. In this paper, we consider the matroid bandit optimization problem,
a fundamental and widely applicable framework for combinatorial multi-armed
bandits where the action space is constrained by a matroid. We tackle the chal-
lenge of devising algorithms that can cope with adversarial contamination of the
feedback rewards, which may severely degrade the performance or even mis-
lead existing methods. Our main contribution is an efficient and robust algorithm,
dubbed ROMM, which builds upon the idea of optimistic matroid maximization
and leverages robust statistical techniques to estimate the quality of the base arms
in polynomial time. We establish lower bounds for matroid bandit optimization
under the ϵ-contamination model we adopt and show that ROMM achieves near-
optimal regret bounds up to polylogarithmic factors. Furthermore, our analysis
unveils a sharp phase transition between the small contamination regime and the
large contamination regime for matroid bandit optimization. We establish that our
algorithm can tolerate up to a universal constant fraction of corrupted feedbacks,
which is optimal under mild conditions.

Keywords: Multi-Armed Bandits · Combinatorial Optimization · Matroids · Con-
tamination Robustness.

1 Introduction

Combinatorial optimization is a classical field that has numerous practical applications,
such as resource allocation [30] and network routing [10]. Modern combinatorial opti-
mization problems are often so massive that even mildly polynomial-time solutions are
infeasible. Luckily, many significant problems, such as finding a minimum spanning
tree, have greedy solutions. Such problems can be often formulated as optimization on
a matroid [22], a combinatorial structure that encapsulates the concept of independence
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and is intimately related to computational tractability. In particular, it is well estab-
lished that the maximum of a modular function subject to a matroid constraint can be
obtained greedily if and only if all feasible solutions are the independent sets of a ma-
troid [25]. Matroids are pervasive in practice because they generalize many forms of
independence, such as linear independence and forests in graphs.

In this paper, we consider a more realistic setting of learning how to maximize a
stochastic modular function on a matroid. The modular function is represented as the
sum of the weights of up to K items selected from the ground set E of a matroid, where
E has totally N items. The weights of the items are unknown and each item a ∈ E is
associated with an unbounded σ-sub-Gaussian distribution Da such that we only have
access to a random sample from Da each time when selecting the item a. These Da’s are
initially unknown and we learn them by interacting repeatedly with the environment.

Many real-world optimization problems can be modeled in our setting, such as
building a spanning tree for network routing [10]. When the delays on the links of
the network are stochastic and their distribution is known, this problem can be solved
by finding a minimum spanning tree. However, when the distribution is unknown, we
need to learn it by observing the delays on different links over time. This introduces
a trade-off between exploration and exploitation, which is characteristic for stochastic
multi-armed bandits [2], a class of online learning problems where a learner optimizes
its actions by receiving noisy feedback from the environment. Inspired by this, we call
the problem of stochastic combinatorial optimization on a matroid as matroid bandit
optimization.

1.1 Closely Related Works

Matroid bandit optimization is a significant problem that has received considerable at-
tention in the past decade, and various facets of this problem have been investigated,
such as regret minimization [14, 26, 11], pure exploration [7], algorithm efficiency [23]
and differential privacy guarantees [5]. However, all of the existing works assume the
true feedback obtained sampled from the underlying distribution. In real applications,
it is common and inevitable that some bandit feedbacks are corrupted due to either
malfunction or attacks from adversaries [21]. Thus, these bandit algorithms will face
contaminated arm feedbacks and their learning utility will deteriorate. The recent years
have indeed witnessed a renewed interest in devising bandit algorithms that are robust
to data corruption, including [21, 13, 4, 28] for classical multi-armed bandits and [29]
for general combinatorial bandits. Moreover, although matroid bandits is a special case
of combinatorial bandits, the algorithms for general combinatorial optimization are not
appropriate for matroid bandits, because the algorithm complexity is too high, since
by exploiting greedy strategy, we can achieve much more efficient solutions for ma-
troid bandits [14]. Therefore, it is still an open question how to design efficient matroid
bandit optimization algorithms that offer robustness against adversarial contamination.

1.2 Our Contributions

In this paper, we concentrate on the robustness aspect of matroid bandit optimization
and study the regret minimization for matroid bandit under the ϵ-contamination model,
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where ϵ fraction of the feedbacks are assumed to be corrupted by an arbitrary adversary.
Our main contributions can be outlined as follows:

– We propose a robust algorithmic framework for matroid bandit optimization, named
ROMM, which leverages the idea of optimistic matroid maximization and utilizes a
generic robust mean estimation sub-routine RME. We present the formal require-
ment for RME in general and also offer several concrete implementations of RME.

– We establish both the instance-dependent and instance-independent regret lower
bounds for matroid bandit optimization under the ϵ-contamination model. This
characterizes the limit of regret with respect to the contamination level ϵ. As a
byproduct, our result also implies the first instance-independent lower bound for
matroid bandit without contamination, which was left as an open problem in [14].

– Via theoretical analysis, we demonstrate that ROMM achieves near-optimal regret
bounds, in both instance-dependent and instance-independent forms. Our results
disclose a sharp phase transition between the small contamination regime and the
large contamination regime. Intuitively speaking, when ϵ is smaller than the mini-
mum suboptimality gap ∆min, ROMM can still attain sub-linear regret as in the non-
contamination setting, while for larger ϵ that is bounded by a universal constant 1

4 ,
the regret scales linearly with T .

Due to space limit, all the technical lemmas and proofs are included in Appendix.

2 Preliminaries

2.1 Combinatorial Optimization over a Matroid

Consider a pair M = (E, I), where E = {1, · · · , N} is a finite set of N items, and I
is a family of subsets of E. We call E the ground set, and any subset A ⊆ E is said to
be independent if A ∈ I.

Definition 1 (Matroid [22]). A pair M(E, I) is said to be a matroid if the following
properties hold:

1. The empty set is independent, i.e., ∅ ∈ I,
2. Every subset of an independent set is independent, i.e., for all A ∈ I, if A′ ⊂ A,

then A′ ∈ I,
3. If A and A′ are two independent sets, and |A| > |A′|, then there exists some item

a ∈ A\A′ such that A′ ∪ {a} ∈ I.

We say an independent set A ∈ I is a basis of M if A is maximal in I, i.e., A
is not a proper subset of any other independent set in I. In other words, if A ∈ I is a
basis of M, then A ∪ {a} /∈ I for ∀a ∈ E\A. Let B be the set of all bases of M. It is
well-known that, all bases of a matroid have the same cardinality [22], which is referred
to as the rank of a matroid. We denote the rank by K, i.e., for ∀A ∈ B, |A| = K.

In a typical combinatorial optimization problem over a matroid, each item a ∈ E is
associated with a non-negative weight µa and we denote by µ ∈ (R+)N the vector of
all N items’ weights, i.e., µ = (µ1, µ2, · · · , µN ). The optimization goal is to find an
optimal basis A∗ that has the maximum total weight, i.e.,
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A∗ ∈ argmax
A∈B

∑
a∈A

µa, (1)

which can be solved efficiently by using the greedy strategy described in Algorithm 1.

Algorithm 1: The greedy strategy for finding a maximum-weight basis
1 Input: MatroidM = (E, I)
2 Initialize: A∗ ← ∅
3 Let a1, · · · , aN be an ordering of base arms such that: µa1 ≥ · · · ≥ µaN

4 for i = 1, · · · , N do
5 if A∗ ∪ {ai} ∈ I then A∗ ← A∗ ∪ {ai}

2.2 Matroid Bandit Optimization

In matroid bandit optimization there is an learner interacting with a matroid bandit
instance sequentially over T rounds. Each item a ∈ E is now called a base arm and
is associated with an underlying unknown feedback distribution Da rather than a fixed
weight. And each basis A ∈ B is now called a super arm. For ∀a ∈ E and t ∈ [T ], we
let xa(t) be the stochastic feedback generated from Da by base arm a in round t. In this
paper, we assume that each Da is an unbounded σ-sub-Gaussian distribution with mean
µa, which is more general than previously used bounded distribution in matroid bandit
works, e.g., [14, 26]. For each base arm a, the sequence {xa(t)}Tt=1 is i.i.d., while in
each round t, {xa(t)}Na=1 can be arbitrarily correlated across base arms. Furthermore,
we consider the semi-bandit feedback [1]. At the beginning of each round t, the learner
selects a super arm A(t) := {a1(t), a2(t), · · · , aK(t)} ∈ B to pull. Then he obtains
a reward r(t) :=

∑
a∈A(t) xa(t) and observes {(a, xa(t))|a ∈ A(t)}, i.e., the specific

feedback from each chosen base arm. Our goal is to equip the learner with a learning
algorithm or policy π to maximize the expected cumulative reward he obtained over the
time horizon T . Equivalently, we usually aim at minimizing the expected cumulative
regret RT after T rounds with RT defined as follows:

RT := E

 T∑
t=1

∑
a∈A⋆

xa(t)−
∑

a∈A(t)

xa(t)

 , (2)

where A⋆ := argmaxA∈B
∑

a∈A µa is the optimal super arm that has maximum ex-
pected reward, and the expectation is taken with respect to all the randomness. Without
loss of generality, we let A⋆ := {a⋆1, · · · , a⋆K}, where the base arms are ordered such
that a⋆k is the base arm with the k-th highest expected feedback, i.e., µa⋆

1
≥ · · · ≥ µa⋆

K
.

We say a base arm a is sub-optimal if it belongs to A⋆ := E\A⋆. Accordingly, each
base arm in A⋆ is called optimal base arm. For any pair of sub-optimal a ∈ A⋆ and
optimal base arm a⋆k ∈ A⋆, we define the gap between them as:

∆a,k := µa⋆
k
− µa. (3)
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For each sub-optimal base arm a ∈ A⋆, we define a set:

Ha := {k : ∆a,k > 0}, (4)

which contains the indices of optimal base arms in A⋆ whose expected feedback is
higher than that of a. The cardinality of Ha is denoted by Ha, i.e., Ha = |Ha|. For
each sub-optimal base arm a, we use the smallest pairwise gap associated with a to
define the sub-optimality gap of a, i.e., ∆a := ∆a,Ha

.

2.3 Contamination Model

We consider a scenario where the learner does not observe the true feedbacks gen-
erated by each base arm, but some corrupted versions of them instead. Specifcially, for
any base arm a ∈ E and any round index t, an adversary can modify the feedback from
xa(t) to an arbitrary value ya(t). We assume that the adversary is restricted by a cor-
ruption rate ϵ, where 0 < ϵ < 1, which means that the adversary can only corrupt up to
ϵ fraction of the feedbacks for any base arm a until any round t. Formally, the learner’s
observations {ya(t)}Tt=1 satisfy∑t

i=1{1xa(i)̸=ya(i)}
t

≤ ϵ, for ∀t ∈ [T ]. (5)

This contamination model is known as ϵ-contamination model, and has garnered
considerable attention in the literature, e.g., [6, 19] and the related references therein. In
addition, the ϵ-Huber contamination model [12], a widely used robust statistics model,
is a special case of the ϵ-contamination model (see [15, 24]). The ϵ-contamination model
defined in eq. (5) is very general and permits the adversary to corrupt the feedbacks in
any manner, as long as the fraction of corrupted feedbacks does not surpass ϵ. Moreover,
the adversary is retrospective, meaning that the adversary can act adaptively and exploit
the learner’s past, present, and future feedbacks. This implies that the adversary can alter
its strategy across different actions and make the learning problem more formidable.

In this paper, our aim is to design a robust learning algorithm for matroid bandit
optimization under the contamination model given by eq. (5). We note that, even though
the learner’s feedbacks are corrupted, its actual reward gains are still based on the true
feedbacks. Therefore, our objective is still to minimize the regret defined by eq. (2).

3 Robust Matroid Bandit Optimization Framework: ROMM

3.1 Framework Design

Our framework can be seen as a robust variant of the Optimistic Matroid Maximization
(OMM) algorithm developed in [14], which is designed based on the optimistic prin-
ciple in the face of uncertainty [20]. Therefore, we refer to our framework as Robust
Optimistic Matroid Maximization (ROMM).

The rough idea of OMM is to adapt the greedy strategy for finding a maximum-
weight basis of a matroid (Algorithm 1) to the stochastic setting. In particular, in each
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Algorithm 2: ROMM Framework
1 Input: Time horizon T , contamination fraction ϵ, sub-Gaussian constant σ, an

(ϵ, δ)-robust mean estimator RME
2 for each base arm a ∈ E do
3 Pull base arm a and observe ya(0).
4 Set Ta(0)← 1.

5 for t = 1, · · · , T do
6 for each base arm a ∈ E do
7 Compute robust feedback mean estimate µ̂a ← RME({ya(i)}Ta(t−1)

i=1 ).

8 Ua(t)← µ̂a + σ
1−2ϵ

√
4 log(t)
Ta(t−1)

.

9 Let a1, · · · , aN be a sorted sequence of base arms such that
Ua1(t) ≥ · · · ≥ UaN (t)

10 A(t)← ∅
11 for i = 1, · · · , N do
12 if A(t) ∪ {ai} ∈ I then A(t)← A(t) ∪ {ai}.
13 Pull A(t), obtain the reward r(t) =

∑
a∈A(t) xa(t), and observe corrupted

feedbacks {ya(t)}a∈A(t).
14 Ta(t)← Ta(t− 1) + 1, for all a ∈ A(t).

round t, one only needs to substitute the weight/expected feedback µa of each item/base
arm a with its optimistic upper confidence bound (UCB) estimate Ua(t), i.e., the sum
of the estimated feedback mean and its confidence interval. When there is no contam-
ination, it has been shown that the simple empirical mean suffices to achieve the order
optimal regret. However, empirical mean is extremely susceptible to the interference
of outliers. Even a single outlier is enough to deviate the empirical mean arbitrarily.
Therefore, when contamination exists, the empirical mean will no longer provide any
meaningful estimation guarantees.

In existence of adversarial contamination, the key to successfully handling poten-
tially corrupted feedback is to replace the empirical mean with other, more robust, esti-
mators of the mean. All we need is a mean estimator with the following property, which
we term as (ϵ, δ)-robust mean estimator

Definition 2 ((ϵ, δ)-robust mean estimator)). Let S be the set of samples z1, · · · , zn ∈
R that are drawn from a σ-sub-Gaussian distribution with mean µ. Let SC be the con-
taminated variant of S where ϵ fraction of samples are contaminated by an adversary.
For ϵ < 1

2 , 0 < δ < 1, an (ϵ,δ)-robust mean estimator RME guarantees with probability
at least 1− δ that

|RME(Sn)− µ| ≤ I(ϵ, δ, n) := C · σ

1− 2ϵ

√ log 1
δ

n
+ ϵ

√
log

1

δ

 , (6)

where C is a universal numerical constant independent of ϵ, δ and n.
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We will provide some robust mean estimators satisfying Definition 2 in the fol-
lowing subsection. We are now ready to introduce our ROMM framework for matroid
bandit optimization under ϵ-contamination model, which is depicted in Algorithm 2. In
a nutshell, in ROMM, to find the (potentially) best super arm in each round t, the learner
follows four steps: (1) calculates the upper confidence bound Ua(t) for each base arm
a ∈ E [line 7-8]; (2) orders all the base arms from the highest to the lowest according
to their UCB values [line 9]; (3) selects them into A(t) greedily according to this order
[line 10-12]; (4) the learner pulls A(t) and observes each newly generated feedback
xa(t) [line 13-14]. It is noteworthy that in our algorithm framework, UCB does not
strictly follow the mean estimate plus its confidence interval I . This is because there is
an additive term in the RME confidence interval I that is independent of the sample size
n and is the same for all base arms. Since what we actually care about is the relative
size of UCB of each base arm, we omit this additive term in the algorithm.

3.2 Theoretical Results

Let ∆min := mina∈A⋆ ∆a. We first consider a setting with small contamination and
analyse the performance of ROMM therein.

Theorem 1 (Instance-Dependent Regret Upper Bound for Small ϵ). For small con-
tamination regime where ϵ ≤ ∆min

4∆min+4
√
3Cσ

√
log T

, the instance-dependent expected cu-
mulative regret of ROMM is at most

RT ≤ 96C2σ2
∑
a∈A⋆

log T

∆a
+

π2

6

∑
a∈A⋆

Ha∑
k=1

∆a,k.

Theorem 2 (Instance-Independent Regret Upper Bound for Small ϵ). For small
contamination regime where ϵ ≤ ∆min

4∆min+4
√
3Cσ

√
log T

, the instance-independent ex-
pected cumulative regret of ROMM is at most

RT ≤ 4
√
6Cσ

√
(N −K)KT log T +

π2(N −K)K

6
.

Remark 1. The above Theorem 1 and Theorem 2 establish the regret guarantees for
the small contamination regime where the contamination proportion ϵ is required to be
smaller than a problem instance gap determined threshold, i.e., ϵ ≤ ∆min

4∆min+4
√
3Cσ

√
log T

.
Recall that, for the standard non-contamination matroid bandits, [14] has proven the
instance-dependent and instance-independent regret upper bounds of O(

∑
a∈A⋆

log T
∆a

+∑
a∈A⋆

∑Ha

k=1 ∆a) and O(
√
(N −K)KT log T + (N − K)K), respectively. Com-

pared with the non-contamination bounds, we can see that, our framework ROMM does
not incur any additional price for withstanding the adversarial corruptions and achieves
the same order of regret as in the standard non-contamination case.

Though consistent with the non-contamination results, our bounds above do not
allow ϵ to be too big relative to the minimum suboptimality gap ∆min. Such kind of
bound on the contamination proportion ϵ is very common in robust learning and robust
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statistics literature and represents the breakdown point the algorithm. Moreover, if ϵ >
Ω(∆min), ROMM will incur a linear regret with respect to T . This is natural, since when
ϵ gets large, it also harder to distinguish between the base arms. In the next section, we
will show that no algorithm can get sub-linear regret since distinguishing between the
top two actions will become impossible even with infinite samples. Before that, we now
put a much milder restriction on ϵ, and derive a more general regret upper bounds for
any ϵ that is at most a universal constant of 1

4 .

Theorem 3 (Instance-Dependent Regret Upper Bound). If ϵ ≤ 1
4 , the instance-

dependent expected cumulative regret of ROMM is at most

RT ≤ 96C2σ2
∑

a∈A⋆∩S

log T

∆a
+

π2

6

∑
a∈A⋆∩S

Ha∑
k=1

∆a,k +
4
√
3CσKϵ

1− 4ϵ
T
√
log T .

Theorem 4 (Instance-Independent Regret Upper Bound). If ϵ ≤ 1
4 , the instance-

independent expected cumulative regret of ROMM is at most

RT ≤ 4
√
6Cσ

√
(N −K)KT log T +

π2(N −K)K

6
+

4
√
3CσKϵ

1− 4ϵ
T
√

log T .

Remark 2. The above Theorem 3 and Theorem 4 illustrates that, in general, ROMM
incurs a linear regret term of O( ϵ

1−ϵKT log(T )) in both the instance-dependent and
instance-independent bound for any 0 < ϵ < 1

4 . The linear term in the regret may be
acceptable if the contamination proportion ϵ is not very large. Moreover, we can see
that, when ϵ = 0 (i.e., there is no contamination), the linear term vanishes and ROMM
recovers the state-of-the-art non-contamination regret derived in [14].

Remark 3. Note that the classical stochastic multi-armed bandit (MAB) is a special
case of matroid bandit with K = 1. When K = 1, our instance-independent bound in
Theorem 4 recovers the state-of-the-art bound of Õ(

√
NT+ ϵ

1−4ϵT ) for ϵ-contaminated
MAB in [21]. That is, our bound can be seen as a generalization of the previous MAB
bound to the matroid bandit case.

3.3 Concrete instantiations of (ϵ, δ)-robust mean estimator

A key component of the ROMM framework is the (ϵ, δ)-robust mean estimator RME,
which plays a crucial role for tolerating corrupted feedbacks. In Definition 2, we have
provided the property that an (ϵ, δ)-robust mean estimator should satisfy in general. But
it still remains how to implement an (ϵ, δ)-robust mean estimator when using the ROMM
framework in practice. Actually, our definition for RME is quite generic and many robust
mean estimators in robust statistics can be used as RME. Here we give three concrete
instantiations of (ϵ, δ)-robust mean estimator.

– Median (Med) [15]: Find the median of all the sample points.
– Trimmed Mean (TM) [18]: Trim the smallest and largest ϵ fraction of points from

the sample and calculate the mean of the remaining points.
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– Shorth Mean (SM) [21]: Take the mean of the shortest interval that removes the
smallest ϵ1 and largest ϵ2 fraction of points such that ϵ1 + ϵ2 = ϵ, where ϵ1 and ϵ2
is chosen to minimize the interval length of remaining points.

The proof for how the above estimators satisfy Definition 2 can be found in the above
referenced papers, thus we omit the proof here.

4 Lower Bounds

In this section, we establish both instance-dependent and instance-independent lower
bounds for matroid bandit optimization under the ϵ-contamination model.

We start by introducing a special class of matroid bandit instances called partition
matorid bandits, which is also used in [14]. Let P1, P2, · · · , PK be a partition of the
ground set E, such that,

K⋃
k=1

Pk = E, and Pi

⋂
Pj = ∅ for ∀i, j ∈ [K]. (7)

The family of independent sets is defined as

I = {I ⊆ E : |I ∩ Pk| ≤ 1,∀k ∈ [K]}. (8)

Then M = (E, I) is a partition matroid of rank K. For the feedback generation, we
consider the Bernoulli distribution with means that lie in the interval (0, 1). Specifically,
we set the mean of each base arm a ∈ Pk, k ∈ [K] as follows:

µa =

{
1
2 , a = mini∈Pk

i,
1
2 − ga, otherwise,

(9)

where 0 < ga < 1
2 and the optimal base arm in each partition is the item with the

smallest index, i.e., mini∈Pk
i, and the gap of each base arm a is just ga, i.e., ∆a = ga.

To prove the lower bounds under ϵ-contamination model, we develop a new hard
instance ξ, which basically comes from the instance used in [14] but we add more
restriction so that we can obtain tight instance-independent lower bound. In ξ, we let
each of P1, P2, · · · , PK contain the same number of base arms, i.e.,

|P1| = |P2| = · · · = |PK | = N/K. (10)

Without loss of generality, we assume that N/K is an integer. The key observation
for proving the instance-independent lower bound is that our problem is equivalent to
K N/K-armed Bernoulli bandit. With this perception, we first study the lower bound
incurred by one of these N/K-armed Bernoulli bandit.

Our main idea for proving the instance-dependent lower bound is to decompose the
regret into a weighted sum of the expected pulling number of all sub-optimal base arms
and then show that no algorithm can achieve low pulling number for each sub-optimal
arm i on ν and νi simultaneously. For this, we consider consistent learning algorithms:
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Definition 3. Denote the number of times that a base arm a is chosen in T rounds
by Na(T ). An algorithm π is called consistent if for any sub-optimal base arm a, the
expected number of times that a is pulled by π is sub-polynomial in T for any stochastic
matroid bandit instance, i.e., E[Na(T )] ≤ o(T c) for any 0 < c < 1. 4

Intuitively, the consistency defined above requires that the algorithm achieves sub-
polynomial regret over all problem instances. Any inconsistent algorithm performs
poorly on some instances and extremely well on others, which makes it difficult to prove
good instance-dependent lower bounds for inconsistent algorithms. Thus, the consistent
algorithm class is considered to be reasonable and has been used for lower bound analy-
sis in many previous bandit literature [14, 3, 9, 27]. Fix a partition Pk and a sub-optimal
base arm ai ∈ Pk. We denote the original instance of this N/K-armed Bernoilli bandit
as ν. Then we define another instance νi where all the setting is the same as ν except
that the mean of the ai is increased by 2∆ai .

Lemma 1. For any fixed partition Pk and any consistent matroid bandit optimization
algorithm, there exists a N/K Bernoulli bandit instance for Pk and an adversary with
contamination fraction ϵ such that the expected regret incurred from Pk, denoted as
RT,Pk

, is at least

RT,Pk
≥ Ω

 ∑
a∈A⋆∩Pk

log T

∆a
+

ϵ

1− ϵ
T

 . (11)

Theorem 5 (Instance-Dependent Lower Bound). For any consistent matroid bandit
optimization algorithm, there exists a matroid bandit instance and an adversary with
contamination fraction ϵ such that the expected regret RT is at least

RT ≥ Ω

∑
a∈A⋆

log T

∆a
+

Kϵ

1− ϵ
T

 . (12)

Next we give the instance-independent lower bound, which is also called min-
max lower bound in some literature. This lower bound characterizes the information-
theoretic limit of regret with respect to contamination level.

Theorem 6 (Instance-Independent Lower Bound). For any matroid bandit optimiza-
tion algorithm, there exists a partition matroid bandit instance and an adversary with
contamination fraction ϵ such that the expected regret RT is at least

RT ≥ Ω

(√
(N −K)KT +

Kϵ

1− ϵ
T

)
. (13)

Remark 4. When ϵ = 0, Theorem 6 establishes the instance-independent lower bound
for non-contamination matroid bandit optimization, which solves the open problem left
in [14].

4 Without loss of generality, we let c = 3
4

in this paper.
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Remark 5. Theorem 5 and Theorem 6 indicates that a linear term w.r.t. T in the regret is
genuinely unavoidable for matroid bandit under the ϵ-contamination model. As a result,
the attained upper bounds in Theorem 3 and Theorem 4 are nearly optimal with respect
to the dominant term T up to poly(log T ) factors.

5 Conclusion

In this paper, we studied the problem of matroid bandit optimization under the ϵ-
contamination model, where a fraction of the feedbacks are corrupted by an arbitrary
adversary. We proposed a robust algorithmic framework, ROMM, which leverages robust
mean estimation techniques to cope with the adversarial perturbations. We established
both instance-dependent and instance-independent regret lower bounds for the problem
and showed that ROMM achieves near-optimal regret bounds up to polylogarithmic fac-
tors. We also revealed a sharp phase transition between the small contamination regime
and the large contamination regime, where the regret behavior changes drastically. We
conducted extensive experiments on synthetic and real-world datasets to demonstrate
the effectiveness and robustness of our algorithm compared with existing methods.

Our work opens up several interesting directions for future research. First, it would
be interesting to extend our framework to other combinatorial structures beyond ma-
troids that admit a greedy algorithm with a provable approximation guarantee, such
as submodular functions or knapsack constraints. Second, it would be desirable to de-
sign more efficient and practical robust mean estimation algorithms that can handle
high-dimensional or heavy-tailed distributions. Third, it would be worthwhile to ex-
plore other adversarial models for matroid bandit optimization, such as bandit feedback
or adaptive adversaries.
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A Useful Facts for Matroid Bandits

Lemma 2 (Bijection [14]). For the optimal matroid basis A⋆ and any chosen basis
A(t), there exists a bijection ι : A(t) 7→ A⋆ such that:

{a1(t), · · · , ak−1(t), ι(ak(t))} ∈ I,∀k = 1, · · · ,K. (14)

In addition, ι(ak(t)) = a⋆i when ak(t) = a⋆i for some i ∈ [K].

Lemma 3 (Regret Decomposition [14]). Define

Rt =
∑
a∈A⋆

xa(t)−
∑

a∈A(t)

xa(t)

be the instant regret incurred by choosing A(t) in round t. We have

E[Rt] ≤
∑
a∈A⋆

Ha∑
k=1

∆a,k1a,k(t), (15)

where the indicator function 1a,k(t) is defined as

1a,k(t) := 1{∃i : ai(t) = a, ι(ai(t)) = a⋆k}. (16)

Moreover,

∑
a∈A⋆

Ha∑
k=1

1a,k(t) ≤ K, ∀t ∈ [T ], (17)

Ha∑
k=1

1a,k(t) ≤ 1,∀t ∈ [T ], a ∈ A⋆. (18)

Lemma 4 (Theorem 5.1 in [8]). Let P1 and P2 be two distributions over any set X . If
for some ϵ ∈ [0, 1/2), we have that TV(P1, P1) =

ϵ
1−ϵ , then there exists two distribu-

tions Q1 and Q2 on the same probability space such that

(1− ϵ)P1 + ϵQ1 = (1− ϵ)P2 + ϵQ2. (19)

Lemma 5 (Hoeffding’s inequality). Let Z1, . . . , Zn be independent bounded random
variables with Zi ∈ [a, b] for all i, where −∞ < a < b < ∞. Then

P

(∣∣∣∣∣ 1n
n∑

i=1

(Zi − E [Zi])

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− 2nt2

(b− a)2

)
Lemma 6 (Instance-Independent Lower Bound for Stochastic n-Multi-Armed Ban-
dits [17, theorem15.2]). There exists a stochastic n-armed bandit instance such that the
expected regret of any algorithm is Ω

(√
(n− 1)T

)
.
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B Proof of Theorem 1

We denote by Rt the instant regret incurred by the super arm A(t) in round t:

Rt :=
∑
a∈A⋆

xa(t)−
∑

a∈A(t)

xa(t). (20)

Then, we have following upper bound on RT :

RT =

T∑
t=1

E[Rt] (21)

≤
T∑

t=1

E

[ ∑
a∈A⋆

Ha∑
k=1

∆a,k · 1a,k(t)

]
(22)

=
∑
a∈A⋆

Ha∑
k=1

∆a,kE

[
T∑

t=1

1a,k(t)

]
, (23)

where the inequality comes from (15) in Lemma 3. In the ROMM framework (Algo-
rithm 2), we denote by µ̂a(t) the estimation for µa at the end of round t, by Ta(t) the
total pull times of base arm a till the end of round t, and by I(ϵ, δ, n) the confidence in-

terval of RME, i.e., C · σ
1−2ϵ

(√
log( 1

δ )

n + ϵ
√
log( 1δ )

)
for some constant C. With these

notations, we define the following good events:

Λt,a := {|µ̂a − µa| ≤ I(ϵ, t−3, Ta(t− 1))} for ∀a ∈ [E], t ∈ [T ]

By using the Hoeffding’s inequality (Lemma 5), we know that,

E

[
T∑

t=1

1{Λt,a}

]
≤

T∑
t=1

t∑
s=1

P
(
|µa − ŵa(t− 1)| ≥ I(ϵ, t−4, Ta(t− 1))

)
≤

T∑
t=1

t∑
s=1

t−3 ≤
T∑

t=1

t−2 ≤ π2

6
.

By (23), we have

RT ≤
∑
a∈A⋆

Ha∑
k=1

∆a,kE

[
T∑

t=1

1a,k(t) · 1{Λt,a}

]
+
∑
a∈A⋆

Ha∑
k=1

∆a,kE

[
T∑

t=1

1a,k(t) · 1{Λt,a}

]
.

(24)

The last term in (24) can be bounded directly as follows

∑
a∈A⋆

Ha∑
k=1

∆a,kE[
T∑

t=1

1a,k(t) · 1{Λt,a}] ≤
π2

6

∑
a∈A⋆

Ha∑
k=1

∆a,k, (25)
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In the remainder of the proof, We focus on the first term in (24). For any round t, a sub-
optimal base arm, say a, is selected rather than its corresponding optimal counterpart
a∗ := ι(a) only if

µa+
2σ

1− 2ϵ

√
3 log(t)

Ta(t− 1)
+

σ

1− 2ϵ
ϵ
√
3 log(t) ≥ Ua(t) ≥ Ua∗(t) ≥ µa∗− σ

1− 2ϵ

√
3 log(t).

(26)
Suppose a∗ = a⋆k for some k ∈ [K], then (26) means

∆a,k ≤ 2σ

1− 2ϵ

(√
3 log(t)

Ta(t− 1)
+ ϵ
√
3 log(t)

)
= 2I(ϵ, t−3, Ta(t− 1)). (27)

Thus, to ensure that the algorithm always chooses a∗ instead of a, it suffices to find the
minimum Ta(t− 1) such that

∆a,k > I(ϵ, t−3, Ta(t− 1)). (28)

If ϵ ≤ ∆a,Ha

4∆a,Ha+4
√
3Cσ

√
log(T )

, we obtain the following inequality by solving (28):

Ta(t− 1) >
48C2σ2 log(t)

∆2
a,k

. (29)

Note that, when ϵ ≤ ∆min

4∆min+4
√
3Cσ

√
log(T )

, (29) holds for all a ∈ E. Let τa,k(t) =

48C2σ2 log(t)
∆2

a,k
. Then we can then say that, when Ta(t − 1) > τa,k(t), the algorithm

must choose a⋆k instead of a. In summary, we know that, when event Λt,a holds, the
algorithm incurs an instant regret of ∆a,k by selecting a instead of a⋆k implying that
Ta(t− 1) ≤ τa,k. Based on this, we can bound the first term in the (24) as follows:

∑
a∈A⋆

Ha∑
k=1

∆a,kE

[
T∑

t=1

1a,k(t) · 1{Λt,a}

]
(30)

≤
T∑

t=1

∑
a∈A⋆

Ha∑
k=1

∆a,kE[1a,k(t) · 1{Ta(t− 1) ≤ τa,k(t)}] (31)

≤ max

T∑
t=1

∑
a∈A⋆

Ha∑
k=1

∆a,k1a,k(t)1{Ta(t− 1) ≤ τa,k(t)} (32)

= max
∑
a∈A⋆

(
Ha∑
k=1

∆a,k

T∑
t=1

1a,k(t)1{Ta(t− 1) ≤ τa,k(t)}

)
. (33)

Denote ma,k =
∑T

t=1 1a,k(t)1{Ta(t− 1) ≤ τa,k(t)}. Note that:

1. the gaps are ordered such that ∆a,1 ≥ · · · ≥ ∆a,Ha
(and thus τa,1 ≤ · · · ≤ τa,Ha

),
2. the counter Ta(t) increases by at most 1 when 1a,k(t) = 1 for any k ∈ [K],
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3. by Lemma 3,
∑Ha

k=1 1a,k(t) ≤ 1 for any given a and t.

By following the above facts, we have ma,k ≤ τa,k(T ) and
∑Ha

k=1 ma,k ≤ ma,Ha
.

Based on these, we continue (33) as follows

∑
a∈A⋆

Ha∑
k=1

∆a,kE

[
T∑

t=1

1a,k(t) · 1{Λ1,t,a, Λ2,t,a}

]

≤
∑
a∈A⋆

[
∆a,1τa,1(T ) +

Ha∑
k=2

∆a,k(τa,k(T )− τa,k−1(T ))

]
(34)

= 48C2σ2 log(t)
∑
a∈A⋆

[
∆a,1

1

∆2
a,1

+

Ha∑
k=2

∆a,k

(
1

∆2
a,k

− 1

∆2
a,k−1

)]
(35)

= 48C2σ2 log(t)
∑
a∈A⋆

(
Ha−1∑
k=1

∆a,k −∆a,k+1

∆2
a,k

+
1

∆a,Ha

)
(36)

≤ 48C2σ2 log(t)
∑
a∈A⋆

(
Ha−1∑
k=1

∆a,k −∆a,k+1

∆a,k∆a,k+1
+

1

∆a,Ha

)
(37)

= 48C2σ2 log(t)
∑
a∈A⋆

[
Ha−1∑
k=1

(
1

∆a,k+1
− 1

∆a,k

)
+

1

∆a,Ha

]
(38)

= 48C2σ2 log(t)
∑
a∈A⋆

(
2

∆a,Ha

− 1

∆a,1

)
< 48C2σ2 log(t)

∑
a∈A⋆

2

∆a,Ha

. (39)

Finally, by combining equation (39) and (25) together, we get

RT ≤ 96C2σ2
∑
a∈A⋆

log(t)

∆a
+

π2

6

∑
a∈A⋆

Ha∑
k=1

∆a,k, (40)

which concludes the proof.

C Proof of Theorem 2

For any a ∈ E, let Ha,λ be the number of optimal base arms in Ha whose feedback
mean is higher than that of the sub-optimal base arm a by at least λ. According to (23),
RT is bounded for any λ as:

RT ≤
∑
a∈A⋆

Ha,λ∑
k=1

∆a,kE

[
T∑

t=1

1a,k(t)

]
+
∑
a∈A⋆

Ha∑
k=Ha,λ+1

∆a,kE

[
T∑

t=1

1a,k(t)

]
. (41)
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The first term in (41) can be bounded similarly to (40):

∑
a∈A⋆

Ha,λ∑
k=1

∆a,kE

[
T∑

t=1

1a,k(t)

]
(42)

≤ 96C2σ2
∑
a∈A⋆

log(T )

∆a,Ha,λ

+
π2

6

∑
a∈A⋆

Ha,λ∑
k=1

∆a,k (43)

<
96C2σ2(N −K) log(T )

λ
+

π2(N −K)K

6
. (44)

The second term in (41) can be bounded trivially as:

∑
a∈A⋆

Ha∑
k=Ha,λ+1

∆a,kE

[
T∑

t=1

1a,k(t)

]
≤ λKT, (45)

where we just use the fact that all gaps ∆a,k are upper bounded by λ and the maxi-
mum number of sub-optimally chosen base arms in T rounds is KT (Lemma 3). By
combining the above upper bounds on the two terms in (41) together, we obtain that

RT ≤ 96C2σ2(N −K) log(T )

λ
+ λKT +

π2(N −K)K

6
. (46)

Finally, by setting λ = 4
√
6Cσ

√
(N−K) log T

KT , we get

RT ≤ 4
√
6Cσ

√
(N −K)KT log T +

π2(N −K)K

6
, (47)

which concludes the proof.

D Proof of Theorem 3

Note that our argument for bounding E[Ta(t − 1)] in Theorem 1 works under the fol-
lowing condition

ϵ ≤ ∆a

4∆a + 4
√
3Cσ

√
log(T )

. (48)

Let S be the set of base arms satisfying the condition (48). The arguments in the proof
of Theorem 1 show that∑
a∈A⋆∩S

Ha∑
k=1

∆a,kE

[
T∑

t=1

1a,k(t)

]
≤ 96C2σ2

∑
a∈A⋆∩S

log(t)

∆a
+

π2

6

∑
a∈A⋆∩S

Ha∑
k=1

∆a,k

(49)

For any base arm a /∈ S, we have

∆a ≥ 4
√
3Cσϵ

√
log T

1− 4ϵ
,
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assuming that ϵ < 1
4 . The total regret contribution for a /∈ S is therefore

∑
a∈A⋆∩S

Ha∑
k=1

∆a,kE

[
T∑

t=1

1a,k(t)

]
≤ 4

√
3Cσϵ

√
log T

1− 4ϵ

∑
a∈A⋆∩S

Ha∑
k=1

E

[
T∑

t=1

1a,k(t)

]
(50)

≤ 4
√
3CσKϵ

1− 4ϵ
T
√

log T (51)

Therefore, the total regret should be bounded as follows

RT ≤ 96C2σ2
∑

a∈A⋆∩S

log(t)

∆a,Ha

+
π2

6

∑
a∈A⋆∩S

Ha∑
k=1

∆a,k +
4
√
3CσKϵ

1− 4ϵ
T
√
log T , (52)

which concludes the proof.

E Proof of Theorem 4

The proof is similar to that of Theorem 3. Specifically, for any base arm a ∈ S, Theo-
rem 2 itself applies, i.e.,

∑
a∈A⋆∩S

Ha∑
k=1

∆a,kE

[
T∑

t=1

1a,k(t)

]
≤ 4

√
6Cσ

√
(N −K)KT log T +

π2(N −K)K

6
.

(53)
For any base arm a ∈ S, we have the same bound we derived in the proof of Theorem 3
hold, that is

∑
a∈A⋆∩S

Ha∑
k=1

∆a,kE

[
T∑

t=1

1a,k(t)

]
≤ 4

√
3CσKϵ

1− 4ϵ
T
√

log T . (54)

By combining the bounds above, we obtain

RT ≤ 4
√
6Cσ

√
(N −K)KT log T +

π2(N −K)K

6
+

4
√
3CσKϵ

1− 4ϵ
T
√
log T , (55)

which concludes the proof.

F Proof of Lemma 1

Notations We first introduce some notations that will be used in the proof. We denote
by R(π, ν, T ) the expected cumulative regret for an algorithm π on instance ν in T
rounds.
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Contamination model In our proof for the lower bound, we consider the well-known
ϵ-Huber contamination, which is just a special case of the ϵ-contamination model as
we discussed in Section 2.3. Given the contamination parameter ϵ ∈ (0, 1

2 ), for each
pull of the base arm a, the observed feedback is either sampled independently from the
true distribution with probability 1 − ϵ, or sampled from some arbitrary and unknown
contamination distribution.

Canonical bandit model We review the general canonical bandit model. In general, a
matroid bandit optimization algorithm π is a mapping from an observation history to a
probability distribution for choosing each supper arm. Under the ϵ-Huber contamination
model, the interaction between π and ν over a given horizon T can be denoted as the
observation history

HT := {(a(1), r̃(1)), (a(2), r̃(2)), · · · , (a(T ), r̃(T ))}, (56)

where a denotes the base arm selected and r̃ denotes the contaminated version of reward
r. An observed history HT is a random variable sampled from the following measurable
space (

([N/K]× R)T ,B
(
([N/K]× R)T

)
,Pπν

)
, (57)

where B
(
([N/K]× R)T

)
is the Borel set on ([N/K]×R)T and Pπν is the probability

measure induced by the algorithm π and the instance ν, which is defined as follows:

1. The probability of selecting a base arm a(t) = a at time t is dictated only by the
algorithm π, and we denote the probability by π(a|Ht−1).

2. The distribution of rewards r(t) in round t is fν
a(t), which is dependent on a(t) and

conditionally independent of the previous observed history Ht−1.
3. Under the ϵ-Huber contamination model, the algorithm cannot observe r(t) di-

rectly, but a contaminated version r̃(t) that only depends on the true reward r(t).
We denote the conditional distribution of r̃ as M(r̃|r).

As a result, the distribution of the observed history HT is

PT
πν(HT ) =

T∏
t=1

π(a(t)|Ht−1)f
ν
a(t)(r(t))M(r̃(t)|r(t)) =

T∏
t=1

π(a(t)|Ht−1)g
ν
a(t)(r̃)

(58)
where we let gνa(t)(r̃) := fν

a(t)(r(t))M(r̃(t)|r(t)).

Lower bound proof With the above notations and preparation, we are now ready to
prove the instance-dependent lower bound. We have,

R(π, ν, T ) ≥ T∆ai

2
· Pπν

(
Nai

(T ) ≥ T

2

)
, (59)

R(π, νi, T ) ≥ T∆ai

2
· Pπνi

(
Nai(T ) ≤

T

2

)
. (60)



20 Y. Tao, X. Cheng, F. Dressler, Z. Cai, D. Yu

Combining these two inequalities, we have

R(π, ν, T ) +R(π, νi, T ) ≥ T∆ai

2

(
Pπν

(
Nai

(T ) ≥ T

2

)
+ Pπνi

(
Nai

(T ) ≤ T

2

))
(61)

≥ T∆ai

4
exp

(
−KL

(
PT
πν ||PT

πνi

))
, (62)

where in the second inequality we use the probabilistic Pinsker’s inequality [16]. By
classical divergence decomposition lemma [17, Lemma 15.1], we have

KL
(
PT
πν∥PT

πνi

)
=
∑
a

Eπν [Na(T )] KL
(
gνa∥gν

i

a

)
(63)

= Eπν [Nai
(T )]KL(gνai

∥gν
i

ai
), (64)

where the second equality is due to the fact that ν and νi only differs in ai. By combing
equation (62) and (64), we get

R(π, ν, T ) ≥ T∆ai

8
exp

(
−Eπν [Nai

(T )]KL(gνai
∥gν

i

ai
)
)
. (65)

Note that, according to Lemma 4, by setting ∆i = c · 2ϵ
1−ϵ ≤ 1

2 for some constant c < 1,

we have TV(fν
ai
∥fνi

ai
) ≤ ∆i

2 ≤ c · ϵ
1−ϵ , which leads to KL(gνai

∥gνi

ai
) = 0. Therefore,

R(π, ν, T ) ≥ c
ϵ

1− ϵ
T. (66)

Recall the instance-dependent lower bound result for multi-armed Bernoulli bandit, see
e.g., [17], an instance-dependent lower bound of Ω(

∑
a∈A⋆∩Pk

log T
∆a

) holds for non-
contaminated matroid bandit optimization. Thus, by combining it with the contaminated
lower bound we prove above, we obtain the following instance-dependent lower bound

RT,Pk
≥ Ω

 ∑
a∈A⋆∩Pk

log T

∆a
+

ϵ

1− ϵ
T

 , (67)

which concludes the proof.

G Proof of Theorem 5

Recall that, the hard instance we use is essentially equivalent to K multi-armed Bernoulli
bandit of the same arm size of N

K . The instance-dependent lower bound for regret of
matroid bandit under contamination is derived as follows

RT ≥ Ω

 K∑
k=1

∑
a∈A⋆∩Pk

log T

∆a
+

K∑
k=1

ϵ

1− ϵ
T

 (68)

= Ω

∑
a∈A⋆

log T

∆a
+

Kϵ

1− ϵ
T

 , (69)

where in the first inequality we apply Lemma 1 separately to each Pk.



Robust Matroid Bandit Optimization against Adversarial Contamination 21

H Proof of Theorem 6

Actually, the contaminated lower bound of Ω( Kϵ
1−ϵT ) we provided in the proof of Theo-

rem 5 is independent on instances. So next we study lower bound for non-contaminated
matroid bandit optimization, which was left as an open problem in [14]. Consider the in-
stance ξ described in Section 4 and note that ξ is equivalent to K N/K-armed Bernoulli
bandit, the instance-independent non-contamination lower bound is derived as follows:

RT ≥ Ω

(
K∑

k=1

√(
N

K
− 1

)
T

)
= Ω

(√
(N −K)KT

)
, (70)

where in the first inequality we apply Lemma 6 separately to each partition Pk.
By combining with the lower bound of Ω

(
Kϵ
1−ϵT

)
under the ϵ-Huber contamination

model we obtained before, we finally obtain

RT ≥ Ω

(√
(N −K)KT +

Kϵ

1− ϵ
T

)
, (71)

which concludes the proof.


