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Abstract—We investigate over-the-air federated learning (OTA-FL) that exploits over-the-air computing (AirComp) to integrate
communication and computation seamlessly for FL. Privacy presents a serious obstacle for OTA-FL, as it can be compromised by
maliciously manipulating channel state information (CSI). Moreover, the limited band at edge hinders OTA-FL from training large-scale
models. It remains open how to enable a multitude of devices with constrained resources and sensitive data to collaboratively train a
global model at band-limited edge. To tackle this, we design a novel algorithm PROBE building upon a lightweight over-the-air gradients
aggregation rule PB-O-GAR. Specifically, PB-O-GAR combines a random sparsification-like dimension reduction with Gaussian
perturbation to provide rigorous privacy and band-adapted communication. It elaborately calibrates the transmission signal according
to devices’ perceived CSI for heterogeneous power constraints accommodation and CSI attack resilience. We show that by utilizing the
common randomness, which deviates from the conventional FL, random sparsification-like dimension reduction can augment privacy in
addition to the intrinsic privacy amplification effect of AirComp. We establish near-optimal convergence rates and explicit trade-offs
among privacy, communication and utility for PROBE. Finally, extensive experiments on benchmark datasets are conducted to validate
our theoretical findings and showcase the superiority of PROBE in realistic settings.
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1 INTRODUCTION

W ITH the proliferation of mobile and IoT devices, the
network edge is witnessing an unprecedented data

explosion. To leverage the potential of the edge big data,
it is imperative to implement large-scale machine learning
algorithms at the edge [1]–[3], which fosters the concept of
edge intelligence and facilitates various innovative applica-
tions that improve human welfare, such as smart cities [4],
[5], health care [6], [7], and autonomous driving [8], [9].
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Federated learning (FL), as a state-of-the-art collaborative
learning paradigm, plays a crucial role in achieving edge
intelligence and has drawn considerable attention from both
academia and industry [10], [11]. In edge FL, the data is
distributed across edge devices and processed locally in
parallel, which mitigates the risk of direct privacy breach or
disclosure. Specifically, a large number of edge devices are
connected to an edge server over a shared wireless medium
and jointly train a global AI model in successive rounds1.

However, due to the unreliable nature of wireless con-
nectivity, as well as the constraints in computing and com-
munication resources, the conventional FL scheme that sep-
arates communication and computation for aggregation can
encounter difficulty in accommodating massive access and
incur intolerable latency for many real-time applications.
When the number of devices is large, this will cause sub-
stantial training efficiency deterioration, which is becoming
a hindrance for achieving fast FL at edge. Fortunately,
since it only requires to compute the sum/average of the
uploads for training the model, over-the-air computing (Air-
Comp) [12] has emerged as a preferable alternative to the
standard multi-access communications for edge FL. Unlike
the traditional multi-access method that decodes multi-
user data independently and performs communication and
computation separately, AirComp exploits the waveform
superposition property of the multi-access channel to per-
form computations directly in the air so that fast aggregation
of terminal uploads can be achieved. Through the seamless
integrated design of communication and computation, Air-
Comp can effectively reduce latency in the distributed train-

1. In this paper, we use the terms round and iteration interchangeably
to refer to the same concept.
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ing process and improve the training efficiency of edge FL.
As a result, federated learning based on AirComp, i.e., over-
the-air federated learning (OTA-FL), has recently gained
considerable interest in edge intelligence research [13]–[18].

1.1 Challenges and Prior Art

Despite the benefits of OTA-FL, there are still some serious
challenges that need to be tackled. One of the most critical
ones is the privacy preservation of the local model updates.
Although OTA-FL circumvents direct sharing of sensitive
local data, various privacy attacks have been developed
to infer private information from these datasets. For in-
stance, membership inference attacks [19], [20] can ascertain
whether a specific data sample belongs to a private local
training dataset, while reconstruction attacks [21]–[23] can
potentially recover the entire private local training dataset.
Therefore, it is vital to provide rigorous privacy protection
for the shared gradients in OTA-FL.

To address this issue, a widely adopted technique is
differential privacy (DP) [24], a well-established technique
in machine learning that offers quantifiable privacy guar-
antees. Several efforts have been made to study OTA-FL
under DP constraint. [25] demonstrated that channel noise
can offer free privacy for OTA-FL when the DP requirements
are mild. If the channel noise is insufficient to meet the
desired DP levels, [26] proposed a noisy gradient descent-
based algorithm and proved that artificial noises added by
each device can enhance the privacy of all devices. This also
highlights AirComp’s potential for privacy amplification,
which is intuitive since the edge server only receives a
superimposed gradient without knowing each specific one.

However, in [25], [26], channel state information (CSI) at
the devices plays a pivotal role not only in aligning their gra-
dients at the central server but also in the privacy guarantee.
In practice, devices obtain CSI from pilots transmitted by
the server, which gives rise to a vulnerability, as the server,
acting as an adversary, can manipulate the pilots to degrade
the privacy level. To cope with this, [27] designed a protocol
that is resilient to CSI attacks, but it neglected the spe-
cific power constraints of devices and lacked convergence
guarantees. Their assumption that only devices with high
perceived channel coefficients participate raises concerns,
especially in stringent DP cases, where heavy noise injection
may surpass affordable power limits, even for devices with
strong channels. Moreover, the lack of convergence guaran-
tee also impedes practical implementation of their protocol.
Achieving enhanced privacy with both CSI resilience and
compatibility to device power limitations thus remains an
open challenge.

Another pressing concern for OTA-FL is the limited
communication bandwidth at edge. While AirComp en-
hances channel resource utilization and reduces training
latency, edge bandwidth is still scarce. Given the trend
towards complex, high-dimensional learning models [28]
and emerging large generative AI models at the edge [29],
[30], such as ChatGPT [31] and DALL-E [32], transmitting
high-dimensional local model updates or gradient from nu-
merous edge devices to the central server becomes increas-
ingly challenging for OTA-FL. Hence, sender devices must
strategically craft and compress uploads to fit bandwidth

constraints in coordination with the edge server for accurate
model learning.

Recent efforts have been made to address this problem in
non-private cases. For example, [33] proposed an innovative
strategy that involves sparsifying gradient estimates. In
their approach, these estimates are projected into a lower-
dimensional space aligned with the available channel band-
width. Then, the server reconstructs the sum of gradient
estimates from the aggregated compressed sparse gradients
using the principles of compressive sensing. Similarly, [34]
presented a band-limited coordinated descent approach that
also entails integrating gradient sparsification to mitigate
communication costs while optimizing edge-to-server com-
munication effectively.

However, when considering both privacy and band-
width limitation for OTA-FL, things get complicated. Com-
pression techniques prolong training iterations due to er-
rors, and privacy guarantees typically deteriorate with in-
creased iterations. To ensure a certain target level of privacy,
more perturbation must be injected for each round which
then makes the convergence error become larger and thus
degrades the learning accuracy. The crux of the matter lies
in mitigating these conflicts and finding an optimal balance
between communication overheads and privacy. Notably,
this challenge has received limited attention so far, with [35]
being a notable exception. [35] used Johnson-Lindenstrauss
(JL) random projection to reduce the dimension of the
local gradient estimates. However, their gradient projec-
tion process relies on matrix multiplication, incurring high
computation costs for edge devices, especially with high-
dimensional models. Moreover, their method also depends
on the knowledge of true CSI information at edge devices,
making it vulnerable to CSI attacks and potentially compro-
mising their privacy claims.

Therefore, it is imperative to consider both privacy and
communication band adaptation for OTA-FL at edge, which
remains largely unexplored in existing works. Specifically,
we aim to bridge this gap by addressing the following
question:

How to achieve private and band-adapted OTA-FL algorithm
with lightweight computation, while also offering AirComp-
incurred privacy amplification, CSI attack resilience, and nearly
optimal learning utility guarantees?

1.2 Main Contributions

In this paper, we provide a positive answer to the above
question. We consider a realistic edge scenario where a
massive number of edge devices with limited computing
and memory resources linear with the model dimension d.
They cooperatively train a global machine learning model
with the assistance of an edge server over a wireless multi-
access channel with a scarce band such that only p (< d)
orthonormal baseband waveforms are available. To make
OTA-FL viable in this setting, we devise a novel OTA-FL
algorithm that is endowed with a newly developed over-
the-air gradients aggregation rule.

Our main contributions can be summarized as follows:
• To enable private OTA-FL at band-limited edge,

we design a lightweight over-the-air gradients ag-
gregation rule, called PB-O-GAR, which is the core
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of OTA-FL. PB-O-GAR combines the idea of band-
tailored sparsification-like dimension reduction and
random Gaussian noise perturbation to provide rigor-
ous device-level differential privacy and band-adapted
communication at the same time. Furthermore, by elab-
orately designing the transmission signal calibration co-
efficient, PB-O-GAR accommodates the heterogeneous
power constraints across edge devices and enables re-
silience against CSI attacks in AirComp.

• Building upon PB-O-GAR, a novel OTA-FL algorithm
PROBE is then proposed. Our learning algorithm fol-
lows the popular federated stochastic gradient de-
scent framework, which ensures its easy implementa-
tion in practice. Moreover, by utilizing the common
randomness generated at the server, which deviates
from the conventional FL, PROBE makes the random
sparsification-like dimension reduction able to augment
privacy protection in addition to the intrinsic privacy
amplification effect of AirComp.

• We establish nearly optimal learning utility bounds and
explicit trade-offs among privacy, communication, and
utility for both objective functions satisfying Polyak-
Łojasiewicz (PL) condition and general non-convex
functions. In addition, we perform extensive experi-
ments on benchmark datasets to corroborate our theo-
retical findings and illustrate the superior performance
of PROBE in various settings.

1.3 Organization

The remainder of this paper is structured as follows. In
Section 2, we provide the necessary background, including
the FL setup, the AirComp and communication model, the
DP and threat model, and the notation used throughout the
paper. In Section 3, we propose the Over-the-air Gradients
Aggregation Rule PB-O-GAR and the OTA-FL algorithm
PROBE. In Section 4, we present the main theoretical results,
including the power compatibility condition, the privacy
guarantees and the utility bounds for the proposed algo-
rithms. In Section 5, we conduct extensive experiments to
evaluate the performance of PROBE and compare it with the
state-of-the-art baseline method. In Section 6, we summarize
the paper and discuss future directions.

2 PRELIMINARIES

2.1 Federated Learning at the Edge

A typical edge FL system consists of m edge devices and
a central edge server, collaboratively building a shared
machine learning model. Each device i ∈ [m] has a local
dataset Di that comprises n data samples {ξi,1, · · · , ξi,n}.
Notably, these local datasets cannot be shared during the
learning process. The learning objective can be formulated
as the following empirical risk minimization problem:

min
w∈Rd

L(w) := 1

m

m∑
i=1

Li(w). (1)

The goal is to find an optimal model parameter w in the d-
dimensional Euclidean space Rd that minimizes the global
empirical risk of the loss on the union of all local datasets.

Here Li(·) denotes the local empirical risk function pertain-
ing to each device i ∈ [m]. More specifically, for any model
parameter w, Li(w) can be expressed as

Li(w) :=
1

n

n∑
j=1

ℓ(w; ξi,j), (2)

where ℓ(w; ξi,j) is the sample-wise loss function of model
parameter w for data point ξi,j . For any data sample ξ and
model parameter w, we assume that ℓ(·; ·) is component-
wise L/

√
d-bounded gradient, i.e.,

|∇kℓ(w, ξ)| ≤ L/
√
d, ∀k ∈ [d]. (3)

Note that, (3) is fairly standard and has been extensively
used in the previous FL literature, e.g., [36], [37].

To solve (1), the classical method is federated stochastic
gradient descent (FedSGD) [38]. In FedSGD, the devices iter-
atively update the model parameter under the orchestration
of the central server, resulting in a sequence of w0, w1, · · · .
In the t-th iteration, the central server first broadcasts the
current model wt−1 to all the devices. Then each device i
computes an unbiased stochastic gradient gi,t such that

E[gi,t] = ∇Li(wt−1) :=
1

n

n∑
j=1

∇ℓ(wt−1; ξi,j), (4)

and sends gi,t to the central server. Finally, the central server
updates the model parameter via the gradient descent step:

wt = wt−1 − ηt ·
1

m

m∑
i=1

gi,t, (5)

where ηt is the learning rate at iteration t. The iteration
proceeds until some termination condition is reached.

2.2 Over-the-Air Computing and Communication
Model
We adopt the analog over-the-air computing [12] for the
training of federated learning model. The essence of over-
the-air computing (AirComp) is to exploit the waveform
superposition property of multi access channel, where de-
vices modulate the gradient on the waveform and use the
air as an auto aggregator. To illustrate the principle of
applying AirComp in FL, we first consider the ideal case
with sufficient bandwidth, and describe how devices upload
their full gradients to the server at t-th iteration in general.
Recall that the central server first broadcasts the latest d-
dimensional global model wt−1 to all devices. Owing to
the high power available at the central server, we assume
the global model is error-free when received by all devices.
Then each device i calculates its local gradient gi,t and
modulates it onto d orthonormal waveforms, one for each
component of the gradient vector. Specifically, the analog
signal constructed by device i at time τ (0 < τ < τ̄ ), denoted
as xi(τ), can be defined as follows,

xi(τ) := ⟨s(τ), gi,t⟩, (6)

where ⟨·, ·⟩ denotes the inner product between two vectors
and s(τ) = (s1(τ), s2(τ), ..., sd(τ)) is a set of orthonormal
baseband waveforms that satisfies:∫ τ̄

0
sk(τ) dτ = 1, for k = 1, · · · , d, (7)
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0
sk(τ)sk′(τ) dτ = 0, for k ̸= k′. (8)

Essentially, the signal xi(τ) is a superposition of the analog
waveforms whereas the magnitude of sk(τ) equals the k-
th component of gi,t. All the waveforms {xi}mi=1 are sent
concurrently from devices into the spectrum. The received
signal of the central server at time τ , denoted by y(τ) can be
expressed as follows:

y(τ) :=
m∑
i=1

ci · xi(τ) + z(τ), (9)

where ci is the time-invariant channel state information
(CSI) of device i, and z(τ) is channel interference. We
assume that the transmitters perfectly know and correct
the phase shift in their channels. Therefore we consider
real channel coefficients, i.e., ci ∈ R+. The received signal
y(τ) at the server will be passed to a set of matched filters,
where each of them is tuned as sk(τ). Denote the vector sent
by each device i at each training iteration t by xi,t (which
equals gi,t here) and the received vector at the server at
iteration t by yt. Then we can formulate the input-output
relationship for t-th training iteration as follows:

yt =
m∑
i=1

ci · xi,t + zt =
m∑
i=1

ci,t · gi,t + zt, (10)

where zt ∼ N (0, σ2
0) is a d-dimensional unbiased Gaussian

noise due to channel inference. In practice, devices acquire
CSI ci’s from pilots transmitted by the central server.

Let p be the number of available orthonormal baseband
waveforms, which is determined by the wireless bandwidth.
In this paper, we consider a more realistic scenario where
communication bandwidth at edge is limited. That is, we
assume p < d such that only partial dimensions of the gra-
dients can be transmitted by each device at each iteration.
Moreover, each device has limited power per iteration such
that each transmitted vector xi,t is subject to an average
power constraint Pi, i.e.,

E[∥xi,t∥22] ≤ Pi, ∀i ∈ [m], t ∈ [T ]. (11)

Let κi := Pic
2
i denote the true effective SNR of device

i, and let κ̃i := Pic̃
2
i denote the effective SNR perceived

by device i from the pilots transmitted by the server. In
practice, each true CSI ci cannot be infinitely large, thus we
assume that there exists a known upper bound ĉ for all the
ci’s. Furthermore, let κ̂ := (maxi Pi) · ĉ2 be the upper bound
of the true effective SNR among all the devices, which is a
common information in the system.

2.3 Differential Privacy and Threat Model
Differential privacy provides provable privacy guarantees
and is resilient to arbitrary auxiliary information available to
attackers. We denote D ∼ D′ as a pair of adjacent datasets,
which means that D′ can be obtained from D by changing
only one record.

Definition 1 ((ϵ, δ)-DP [39]). A randomized algorithmM :
Xn 7→ Y satisfies (ϵ, δ)-differential privacy if for every pair
of adjacent datasets D ∼ D′ that differ in exactly one data
record, it holds for ∀S ⊆ Y that

P(M(D) ∈ S) ≤ eϵ · P(M(D′) ∈ S) + δ. (12)

In FL, DP guarantees can be categorized into instance-
level DP (protecting each instance in the dataset of any
device) and device-level DP (protecting the whole dataset
of any device), depending on how the adjacent dataset is
defined. In this paper, we are interested in device-level
DP. That is, we want to ensure that the aggregated global
gradients are nearly the same regardless of the change of
any local dataset at any device. In this case, each element
of D or D′ is a local dataset. To achieve DP, one can inject
appropriate Gaussian noise into the output, which is called
Gaussian Mechanism.

Definition 2 (Gaussian Mechanism [39]). Given any input
data D ∈ Xn and a query function q : Xn → Rd, the
Gaussian mechanism MG is defined as q(D) + ν where
ν ∼ N (0, σ2

GId). Let ∆2(q) be the ℓ2-sensitivity of q, i.e.,
∆2(q) := supD∼D′ ∥q(D) − q(D′)∥2. For any σ, δ > 0,MG

guarantees (∆2(q)
σG

√
2 log 1.25

δ , δ)-DP. That is, if we want the
output of q to be (ϵ, δ)-DP for any 0 < ϵ, δ < 1, then σG

should be set to ∆2(q)
ϵ

√
2 log 1.25

δ .

In the context of FL, if (ϵ, δ)-DP is guaranteed for each
training iteration, then the total privacy guarantee over T
iterations can be given by the adaptive composition result.

Lemma 1 (Adaptive Composition [39]). For any ϵ0, δ0, δ
′ >

0, let MT = (M1, · · · ,MT ) be a sequence of (ϵ0, δ0)-
DP algorithms, where Mi’s are potentially chosen sequen-
tially and adaptively. Then MT is (ϵ̃, δ̃)-DP, where ϵ̃ =
ϵ0
√
2T log(1/δ′) + Tϵ0

eϵ0−1
eϵ0+1 and δ̃ = Tδ0 + δ′. That is, if

we wantMT to be (ϵ, δ)-DP, then it suffices for each Mi to
be ( ϵ

2
√

2T log(2/δ)
, δ
2T )-DP.

We assume the central server to be semi-honest or honest-
but-curious. That is, the server will follow the prescribed
protocol strictly, but try to infer sensitive information about
single individual data samples from both the transmitted
gradients and any other available auxiliary information
during the FL process. In practice, devices acquire CSI
from pilots transmitted by the central server. Therefore,
the central server can attack the CSI estimation process to
encourage the devices to increase their transmit power or
to add less noise to their transmissions by suggesting that
their channel quality is worse than it is in reality. We assume
that a common pilot signal is used to learn the CSI by all the
devices and thus the CSI value can only be scaled by the
same parameter across the devices. Let c̃i be the CSI learnt
by device i, then c̃i = α · ci for all i ∈ [m], where α ∈ (0, 1]
is the scaling parameter.

2.4 Other Useful Notations

For any vector x, we use [x]k to denote the k-th com-
ponent of x, if it makes sense. Moreover, we use [x]∗k
to denote the k-th non-zero component of x, if it makes
sense. We use ⊙ to denote element-wise multiplication for
two vectors with equal length, e.g., for any two vectors
x = ([x]1, [x]2, · · · , [x]d) and y = ([y]1, [y]2, · · · , [y]d) in
Rd, we have x ⊙ y = ([x]1 · [y]1, [x]2 · [y]2, · · · , [x]d · [y]d).
For any positive integer N , we use [N ] to denote the set
of {1, 2, · · · , N}. For any set A, we use |A| to denote its
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TABLE 1: Summary of the main notations

Symbol Description

m Number of devices
d Dimension of the model
L(w) Global empirical risk function w.r.t model w
Li(w) Local empirical risk function of device i w.r.t model w
ℓ(w; ξ) Sample-wise loss function w.r.t model w under data ξ
wt Updated model parameter in round t
gi,t Stochastic gradient generated by device i in round t
g′i,t Compressed version of gi,t for band adaptation
g̃i,t Noisy version of g′i,t for privacy
ĝi,t Re-scaled version of g̃i,t
hi Signal calibration coefficient of device i
xi,t Vector sent by device i in round t
yt Vector received by the server in round t
ηt Learning rate in round t
α Scaling parameter of CSI attack
Pi Power limit of device i
ci True CSI of device i
c̃i CSI learnt by device i
ĉ Known upper bound for true CSI
κi True effective SNR of device i
κ̃i Effective SNR perceived by device i
κ̄ A Lower bound for perceived effective SNR κ̃i’s
κ̄0 κ̄/α2

κ̂ Known upper bound of the true effective SNR κi’s
ϵ, δ Differential privacy parameters
p Number of available orthonormal baseband waveforms
ρ Compression ratio p/d
zt Channel noise in round t
σ Standard deviation of Gaussian noise added by each device

cardinality. Table 1 summarizes the main notations used in
this paper.

3 OUR PROPOSED METHODS

3.1 Over-the-Air Gradients Aggregation Rule

To address privacy and communication aspects simultane-
ously for local gradients sharing, we need to answer: (1)
how to release a private and bandwidth adaptive com-
pressed local gradient at each device and (2) how to get a
reasonable estimator for the global gradient at the server.
Specifically, given a model parameter w ∈ Rd, how can
devices privately release local gradient estimators in a
lower-dimensional space Rp with p < d such that these
local gradient estimations, when uploaded by AirComp,
can be received at the server as an unbiased global gradi-
ent estimation? We solve this by presenting a private and
band-adapted over-the-air gradients aggregation rule called
PB-O-GAR, which will lie in the center of our proposed
learning algorithm.

We present PB-O-GAR in Algorithm 1. Specifically,
PB-O-GAR requires a component-index set C ⊆ {1, · · · , d}
as input, among others, indicating which components are
active after the band-adapted compression. The set C can be
fully described by an indicator vector IC ∈ {0, 1}d, which is
defined as follows:

[IC ]k =

{
1 if k ∈ C
0, otherwise

,∀k ∈ [d]. (13)

By using IC , the representation, communication and storage
of C will cost only O(d) bits, which is lightweight. The
gradient sharing and aggregation process in PB-O-GAR can
be divided into five steps, which are elaborated as follows.
Step 1. Band-Adapted Dimension Reduction:

Algorithm 1: PB-O-GAR: Private and Band-
Adapted Over-the-Air Gradients Aggregation Rule
(for t-th iteration)

Input: Local gradients {gi,t}mi=1, indicator vector IC
for the component-index set C, noise
magnitude σ.

1 p← ∥IC∥1;
2 for every device i in parallel do

/* Band-Adapted Dimension Reduction */
3 for k ← 1, · · · , p do
4 [g′i,t]k ← [gi,t][IC ]∗k ;

/* Gaussian Perturbation for Privacy */
5 Sample vi ∼ N (0, σ2Ip);
6 g̃i,t ← g′i,t + νi,t;

/* Gradient Re-Scale and Signal Calibration */
7 Calculate the compression ratio ρ← p/d;
8 Get the re-scaled gradient ĝi,t ← 1

ρ · g̃i,t;
9 Set the vector to send as xi,t ← hi · ĝi,t with

hi =
1
c̃i

√
ρ·κ̄

L2+dσ2 ;
10 Send xi,t to the server simultaneously with other

devices via AirComp;

/* Post-Processing at Server */
11 Server receives the vector yt from the channel;
12 Server initializes ĝt ← 0;
13 for k ← 1, · · · , p do
14 Server sets [ĝt][ICt ]

∗
k
← 1

λ·m · [yt]k,∀k ∈ [p];

Output: The global gradient estimator ĝt.

Given the components-index set C (represented by IC),
each device i reduces the dimension of local gradient gi,t by
only keeping the active components indicated by IC to get a
p-dimensional vector g′i,t:

[g′i,t]k = [gi,t][IC ]∗k ,∀k ∈ [p]. (14)

Step 2. Gaussian Perturbation for Privacy:
To protect the privacy of local data samples, each device

i perturbs the compressed local gradient with a Gaussian
random noise νi,t of magnitude σ:

g̃i,t = g′i,t + νi,t with νi,t ∼ N (0, σ2Ip). (15)

Step 3. Gradient Re-Scale and Signal Calibration:
Each device i further magnifies g̃i,t with the factor of

1/ρ to get an unbiased estimator ĝi,t for its local gradient
gi,t, where ρ := p/d is referred to as the compression ratio:

ĝi,t =
1

ρ
· g̃i,t. (16)

Based on this estimator, each device i then generates the
vector to send, i.e., xi,t, as

xi,t = hi · ĝi,t, (17)

where the scaling factor hi :=
1
c̃i

√
ρ·κ̄

L2+dσ2 is the signal cal-
ibration coefficient that serves for fitting power constraints
across devices as well as aligning gradients at the server.
After that, all devices modulate xi,t’s onto ρ · d orthonormal
waveforms, one for each component of xi,t and transmit
their analog signals simultaneously.
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Step 4. Post-Processing at Server:
After receiving the superposition of the signals transmit-

ted by the devices, the server gets a vector yt as follows:

yt =
m∑
i=1

ci · xi,t + zt =
m∑
i=1

ci · hi · ĝi,t + zt (18)

=
m∑
i=1

ci
c̃i

√
ρ · κ̄

L2 + dσ2
· ĝi,t + zt (19)

=
1

α

√
ρ · κ̄

L2 + dσ2

m∑
i=1

ĝi,t + zt, (20)

where zt ∼ N (0, σ2
0Iρ·d) is the channel noise. For simplicity,

we define

λ :=
1

α

√
ρ · κ̄

L2 + dσ2
=

√
ρ · κ̄0

L2 + dσ2
, (21)

then the received vector yt can be further expressed as

yt =
λ

ρ

m∑
i=1

g′i,t +
λ

ρ

m∑
i=1

νi,t + zt =
λ

ρ

m∑
i=1

g′i,t + z̃t, (22)

where z̃t ∼ N (0, σ̃2) is the effective noise in total with σ̃

being
√

λ2m
ρ2 σ2 + σ2

0 . The server performs post-processing
on yt to recover a d-dimensional unbiased global gradi-
ent estimator ĝt ∈ Rd for the global gradient ∇L(wt−1).
Specifically, the server first initializes ĝt = 0, and then
assigns normalized value of each component of yt to the
corresponding position of ĝt as follows:

[ĝt][ICt ]
∗
k
=

1

λ ·m
· [yt]k,∀k ∈ [p]. (23)

Remark 1 (Sparsification-like dimension reduction). We
rethink the global gradient estimate in a more concise form.
Let v+i,t ∼ N (0, σ2Id) and z+t ∼ N (0, σ2

0Id) be the com-
plement of vi,t and zt in the original d-dimensional space,
i.e.,

[v+i,t][ICt ]
∗
k
=

1

λ ·m
· [vi,t]k,∀k ∈ [p], (24)

[z+t ][ICt ]
∗
k
=

1

λ ·m
· [zt]k,∀k ∈ [p]. (25)

The global gradient estimate ĝt can be written as

ĝt =
1

ρ

[(
1

m

m∑
i=1

(gi,t + ν+i,t)

)
⊙ ICt

]
+

z+t
λ ·m

⊙ ICt , (26)

which indicates that the global gradient estimate ĝt essen-
tially comes from a sparsification-like compression together
with Gaussian perturbation.

3.2 OTA-FL Algorithm
With the over-the-air gradients aggregation rule PB-O-GAR,
we now present our learning algorithm PROBE for private
OTA-FL at Band-Limited Edge in Algorithm 2. Our learning
algorithm consists of two phases:
Phase 1. Initialization:

As explained in Section 2.3, the CSI attack causes each
device to perceive a distorted version of effective SNR. Let
κ̄ be a common lower bound for all the perceived effective
SNRs κ̃i’s such that κ̃i ≥ κ̄,∀i ∈ [m]. To obtain κ̄, we design
a two-pass communication scheme between the devices and

Algorithm 2: PROBE: Private OTA-FL at Band-
Limited Edge

Input: Local datasets {Di}mi=1, initial model w0,
noise magnitude σ, number of available
orthonormal baseband waveforms p, number
of learning iterations T , learning rate ηt.

/* Initialization */
1 for every device i in parallel do
2 Perceive c̃i;
3 Send κ̃i to the server;

4 Server broadcasts a uniform lower bound κ̄ for all
the received κ̃i’s;
/* Learning Process */

5 for iteration t← 1, · · · , T do
6 Server generates a random indicator vector

ICt
∈ {0, 1}d such that ∥ICt

∥1 = p;
7 Server broadcasts the latest model wt−1 and

indicator vector ICt
;

8 for every device i in parallel do
9 Compute local gradient gi,t ← ∇L(wt−1) ;

10 PB-O-GAR({gi,t}mi=1, ICt
, σ);

11 Server updates the model via wt ← wt−1−ηt · ĝt;
Output: woutput

the server. In the first pass, all devices send their perceived
effective SNR, i.e., κ̃i to the server. Then in the second
pass, the server broadcasts the common lower bound κ̄
to all devices. The validity of the received κ̄ can be easily
verified by each device by checking if κ̄ is less than or
equal to its perceived effective SNR κ̃i. Furthermore, we
define κ̄0 := κ̄/α2, which is then a lower bound for all true
effective SNR, i.e., κ̄0 ≤ κi. We note that, κ̄0 is bounded
above by the publicly known maximal true effective SNR κ̂.
Phase 2. Model Training

The model training process consists of a series of syn-
chronized iterations t = 1, · · · , T . In each iteration t ∈ [T ],
the central server randomly generates a component-index
set Ct ⊆ [d] whose size accommodates the band limit such
that |Ct| = ρ·d ≤ p, where ρ is referred to as the compression
ratio. The server broadcasts the indicator vector ICt

together
with the latest model wt−1 to all the devices. The devices
compute local gradients, which are then shared to and
aggregated at the server via our PB-O-GAR. Finally, the
server updates the global model via the gradient descent
step of wt = wt−1 − ηt · ĝt, where ηt is the learning rate.

4 MAIN RESULTS

4.1 Power compatibility

The power of edge devices is limited and their limitations
are often diverse among devices, which makes the imple-
mentation of OTA-FL subject to these power limitations. So
it is essential for the OTA-FL algorithm design to account
for the heterogeneous power constraints. Now, we demon-
strate that our PROBE satisfies the heterogeneous power
constraints among devices, from which we also disclose
how PROBE achieves the power compatibility via our novel
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signal scaling rule. Moreover, we also compare our ap-
proach for achieving power compatibility with the previous
works on private OTA-FL in terms of privacy preservation.

To respect the power limitation at each device, we let
each device i scale its private and compressed local gradient
ĝi,t by the coefficient hi, which depends on both the public
effective SNR information κ̄ and the local effective SNR
information c̃i, among others. This way, the transmitted
local gradient estimates can be properly aligned so that each
local gradient has equal weight in the received vector at the
server as shown in (22), which is essential for the server to
obtain an unbiased global gradient estimate.

Theorem 1 (Power Compatibility). Our algorithm satisfies
the power constraints of devices, i.e., for each i ∈ [m] and
t ∈ [T ], E[∥xi,t∥22] ≤ Pi.

Proof of Theorem 1.

E[∥xi,t∥22] = E
[∥∥∥∥hi ·

1

ρ
· g̃i,t

∥∥∥∥2
2

]
(27)

=
κ̄

c̃2i (L
2 + dσ2)ρ

E
[∥∥g̃i,t∥∥22] (28)

=
κ̄

c̃2i ρ(L
2 + dσ2)

E
[∥∥g′i,t∥∥22 + ∥∥νi,t∥∥22] (29)

≤ κ̄

c̃2i ρ(L
2 + dσ2)

(
ρd
( L√

d

)2
+ ρdσ2

)
(30)

=
κ̄

c̃2i
≤ Pic̃

2
i

c̃2i
= Pi. (31)

Remark 2 (Comparison with existing designs). We note
that, to satisfy the power limitation and meanwhile get an
unbiased global estimate at the server, another strategy is
used in [26] as well as its follow-up work [35]. Specifically,
they let the vector to send at each device be

xi,t =

√
ϕi,1Pi

L
gi,t +

√
ϕi,2Piν̄i,t. (32)

Here ϕi,1 ∈ [0, 1] and ϕi,2 ∈ [0, 1− ϕi,1] denote the fraction
of power dedicated to the normalized local gradient vector
1
L ·gi,t and the DP noise ν̄i,t ∼ N (0, 1·Id), respectively. These
parameters satisfy ϕi,1 + ϕi,2 ≤ 1 so that the maximum
power constraint of Pi is satisfied. In order to form an
unbiased estimate of the global gradient, all devices pick
the ϕi,1’s as:

ϕi,1 =
mini′∈[m] κi′

κi
, (33)

so that the server can receive an aggregated vector where all
local gradients have the same weight:

yt =

√
mini′∈[m] κi′

L

m∑
i=1

gi,t +
m∑
i=1

√
ϕi,2Piν̄i,t + zt. (34)

In their design, the level of privacy of each device is de-
termined by the power dedicated to the DP noise, which is
constrained by the ratio of its individual effective SNR and
the worst effective SNR across devices. When the power
constraints across devices become more consistent, the pri-
vacy protection provided by DP noises becomes weaker. In
the worst-case scenario of homogeneous effective SNR such

that ϕi,1 = 1 for all devices, no power is left for privacy
preservation. To overcome this drawback, we do not divide
power between gradient and noise, but treat the gradient
and the noise as a whole by first generating the noisy
gradient and then re-scale the noisy gradient according to
both global and local effective SNR information. By the
expertly designed coefficients hi’s, we achieve the power
compatibility and unbiased global estimate simultaneously.

4.2 Privacy Guarantees

For the privacy part, we start by presenting per-device
privacy loss guaranteed in each iteration by injecting DP
noise of magnitude σ at each device.

Theorem 2 (Per-Round Individual Privacy Loss). For any
δ̂ > 0, our learning algorithm PROBE achieves (ϵt, δ̂)-LDP
for each iteration, where

ϵt ≤
2
√
2L
√
log 1.25

δ̂√
m
ρ σ

2 + L2

κ̂ σ2
0 +

d
κ̂σ

2
0σ

2
. (35)

Proof of Theorem 2. In order to bound the privacy loss, we
first analyse the ℓ2-sensitivity of the information queried
by the server, i.e., E[yt] = λ

ρ

∑m
i=1 g

′
i,t, which is denoted as

∆2(q). To bound ∆2(q), we consider any two different local
datasets Di and D′

i at device i, while fixing the datasets (and
thus the original local gradients) of the remaining (m − 1)
devices. ∆2(q) can then be bounded as

∆2(q) = max
Di∼D′

i

∥q|Di
− q|D′

i
∥2 (36)

=
λ

ρ
· max
Di∼D′

i

∥g′i,t(Di)− g′i,t(D
′
i)∥2 (37)

≤ λ

ρ
· max
Di∼D′

i

(
∥g′i,t(Di)∥2 + ∥g′i,t(D′

i)∥2
)

(38)

≤ λ

ρ
· 2(√ρL) = 2λL

√
ρ
. (39)

Note that the total Gaussian noise injected is of the magni-
tude of σ̃ =

√
λ2m
ρ2 σ2 + σ2

0 . By using Gaussian mechanism
provided in Definition 2, we obtain

ϵt ≤
2
√
2L
√
log 1.25

δ̂√
m
ρ σ

2 + L2

κ̄0
σ2
0 +

d
κ̄0
σ2
0σ

2
, (40)

which then leads to (35) due to κ̄0 ≤ κ̂.

Next, we show how to set proper σ for any given target
level of privacy determined by the DP parameters ϵ and δ.

Theorem 3 (Required Noise Magnitude for Target Privacy).
Given target ϵ, δ > 0, to guarantee per-device (ϵ, δ)-DP
through T learning iterations, it suffices to set

σ =
8L

ϵ

√
T log

2.5T

δ
log

2

δ

/√
m

ρ
+

d

κ̂
σ2
0 . (41)

Proof of Theorem 3. According to the adaptive composition
result of DP (Lemma 1), it suffices to ensure (ϵ0, δ0)-DP in
each iteration for each device i, where ϵ0 = ϵ

2
√

2T ln(2/δ)
and

δ0 = δ
2T . Using the upper bound on privacy loss incurred
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by DP noise with magnitude of σ shown in (35), it suffices
to set σ such that the following hold,

2
√
2L
√
log 2.5T

δ√
m
ρ σ

2 + L2

κ̂ σ2
0 +

d
κ̂σ

2
0σ

2
≤ ϵ0, (42)

which gives

σ ≥

√√√√ 64L2T log 2.5T
δ log 2

δ

ϵ2 − L2

κ̂ σ2
0

m
ρ + d

κ̂σ
2
0

. (43)

Remark 3 (Genuine Robustness againt CSI attacks). In pre-
vious works (e.g., [26], [35]), both the gradient aggregation
scheme and the privacy guarantee rely on the (true) CSI
at devices, which makes their frameworks vulnerable since
CSI values are prone to attacks by the adversarial central
server. By contrast, in our design, the accurate CSI at devices
is not crucial for aligning their model updates at the central
server. Also, we have shown in Theorem 2 that, the privacy
loss is irrelevant to the CSI attack parameter α, which means
our algorithm is immune to the CSI attack. Recently, [27]
also tackles CSI attacks. Our algorithm outweighs theirs in
the follwoing three major aspects.

• Firstly, to avoid the privacy breach caused by a poten-
tial CSI attack, they simply ignore the channel noise,
even if the magnitude of channel noise is known. As
a result, they require each device inject more noise so
that the desired privacy level (ϵ, δ) is satisfied at the
expense of learning utility. In contrast, we leverage the
global information κ̄ that can be easily obtained via our
newly designed two-pass communication process in the
initialization phase of PROBE. Based on this, we devise
a novel signal rescaling factor hi =

1
c̃i

√
ρ·κ̄

L2+dσ2 instead
of directly using the naive hi = 1

c̃i
as in paper [27].

This way, we reduce the effect of CSI attack in yt,
as the weight of the gradient information transmitted
by devices, i.e., the factor λ

ρ , is bounded above, which
means the adversary cannot make the channel noise
insignificantly small in PROBE. Secondly, their method
fails to adapt the magnitude of transmit signal at de-
vices to their specific power constraints. In general,
to align the local gradients at the server and obtain
an unbiased estimate of the global gradient, devices
should adjust the magnitude of their transmit signal
so that both the desired weight of their local gradients 2

and their heterogeneous power constraints are satisfied.
This adjustment is essential for power compatibility
and has been used by many previous OTA-FL works,
such as [25], [26], [33]–[35]. However, in paper [27], they
circumvent this by assuming that devices participate
in the learning process with some random probability
such that only the devices with good enough channel
coefficients can participate in each round to improve

2. In this paper, we assume all local gradients have equal weight,
i.e., the global gradient is the simple average of all the local gradients.
However, this can be easily extended to weighted average case by
setting the scaling factor hi = m·qi

c̃i

√
ρ·κ̄

L2+dσ2 , where qi is the weight
of device i.

power efficiency. And for those participated devices,
they have sufficient power, irrespective of their channel
states, to transmit the vector xi,t =

1
c̃i
(gi,t + νi,t). This

raises serious concerns about the practicality of their
method. Due to the CSI attack, c̃i could be very small,
which makes ∥xi,t∥2 very large and thus requires a lot
of power to send xi,t. This problem will be aggravated
if we consider strict DP cases where heavy noise in-
jection is needed, leading to ∥νi,t∥2 as well as ∥xi,t∥2
exceeding the power the devices can afford to send and
thus resulting in the case where only few or even none
of the devices can participate in the learning process.
Therefore, their assumption is simple but evidently
unrealistic and fatal.

• Finally, [27] does not offer any result for learning utility
of their algorithm, in both theoretical and experimental
aspects. So it remains unclear how effective their OTA-
FL algorithm can be even under the strong client partic-
ipation assumption mentioned above. We provide both
theoretical and experimental utility results for PROBE.

Altogether, our work provides the first solution that pro-
vides genuine robustness to CSI attacks for private OTA-FL.

Remark 4 (Privacy amplification). The per-device privacy
loss shown in (35) scales as at most Õ(

√
ρ
m ·

1
σ ). Previous

work [26] has shown that the per-device privacy loss can
be reduced from Õ( 1σ ) to Õ( 1√

m
1
σ ) by utilizing analog

AirComp. In this work, we further reduce the privacy loss
by a multiplicative factor O(

√
ρ) via the sparsification-

like gradient compression, which enhances the privacy for
devices. In [36], [40], sparsification is used in FL with
traditional digital aggregation scheme for privacy. The set
of active components therein is determined separately by
each device, which is reasonable in the digital scheme since
model updates are transmitted individually. However, if
we simply use their approach in the analog scheme, the
amplification brought by AirComp, i.e. the 1/

√
m factor, will

not be preserved. To fix this, we adopt a different approach
where the active components are randomly sampled by the
central server. Thanks to the common active components
across devices, the privacy amplification brought by analog
AirComp and the sparsification are retained simultaneously
in OTA-FL.

4.3 Utility Analysis
4.3.1 Accuracy of the Global Gradient Estimate
As a preparation for studying the utility of PROBE, we
study the accuracy guarantee for the global gradient esti-
mate obtained at the server. Specifically, we show that the
global estimate ĝt used at the server per training iteration is
unbiased and has ∥gt∥2-dependent variance.

Lemma 2. For any t ∈ [T ], ĝt satisfies that
1) unbiased expectation:

E[ĝt] = gt := ∇L(wt−1) =
1

m

m∑
i=1

gi,t, (44)

2) ∥gt∥2-dependent variance:

E
[
∥ĝt − gt∥22

]
≤ 1− ρ

ρ
∥gt∥22 +

dσ2

ρm
+

ρdσ2
0

λ2m2
. (45)
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Proof of Lemma 2. We start with the unbiasedness of ĝt. Specifically, for each component k ∈ [d], we have

E[[ĝt]k] = E

[
1

ρ ·m

m∑
i=1

([gi,t]k + [ν+i,t]k) · [ICt
]k

]
+ E

[
[z+t ]k
λ ·m

· [ICt
]k

]

=

(
E

[
1

ρ ·m

m∑
i=1

([gi,t]k + [ν+i,t]k)

]
+ E

[
[z+t ]k
λ ·m

])
· E [[ICt

]k] =

(
1

ρ ·m

m∑
i=1

[gi,t]k

)
· (ρ · 1 + (1− ρ) · 0)

=
1

m

m∑
i=1

[gi,t]k.

Next, we bound the variance of ĝt:

E
[
∥ĝt − gt∥22

]
= E

∥∥∥∥∥1ρ
(
gt +

1

m

m∑
i=1

ν+i,t

)
⊙ ICt

− gt +
z+t

λ ·m
⊙ ICt

∥∥∥∥∥
2

2


= E

[∥∥∥∥1ρ · gt ⊙ ICt
− gt

∥∥∥∥2
2

]
+ E

∥∥∥∥∥1ρ
[(

1

m

m∑
i=1

ν+i,t

)
⊙ ICt

]∥∥∥∥∥
2

2

+ E

∥∥∥∥∥ z+t
λ ·m

⊙ ICt

∥∥∥∥∥
2

2


= ECt

[∥∥∥∥1ρ · (gt ⊙ ICt
)− gt

∥∥∥∥2
2

]
+Eν+

i,t

ECt

∥∥∥∥∥1ρ
[(

1

m

m∑
i=1

(gi,t + ν+i,t)

)
⊙ ICt

]∥∥∥∥∥
2

2

∣∣∣∣∣ν+i,t
+Ez+

t

ECt

∥∥∥∥∥ z+t
λ ·m

⊙ ICt

∥∥∥∥∥
2

2

∣∣∣∣∣z+t


=

(
1

ρ
− 1

)
∥gt∥22 + E

1
ρ

d∑
k=1

(
1

m

m∑
i=1

[ν+i,t]k

)2
+ E

[
d∑

k=1

ρ[z+t ]
2
k

λ2m2

]

=
1− ρ

ρ
∥gt∥22 +

1

ρ
· E

∥∥∥∥∥ 1

m

m∑
i=1

ν+i,t

∥∥∥∥∥
2

2

+
ρ

λ2m2
E[∥z+t ∥22]

≤ 1− ρ

ρ
∥gt∥22 +

dσ2

ρm
+

ρdσ2
0

λ2m2
.

Remark 5 (Computation efficiency). Previously, the work
[35] proposed to compress private local gradients into a low-
dimensional space through random projection matrices of JL
transformation type. However, they only obtained the upper
bound for the 2nd-order raw moment of the global gradient
estimate instead of variance. Furthermore, their approach
unavoidably incurs an additional O(ρd3) local computation
cost for each device, which is not feasible in resource-
constrained edge scenarios. In contrast, our sparsification-
like compressor requires only O(d) computation for each
device, which is more computation efficient.

4.3.2 Utility Bounds

We analyse the utility of our algorithm under (ϵ, δ)-DP for
non-convex but smooth objective functions.

Definition 3 (ι-smooth function). We say a differentiable
function f is ι-smooth (ι > 0) over space X , if for any pair
of x, x′ ∈ X , it holds that

∥∇f(x)−∇f(x′)∥2 ≤ ι · ∥x− x′∥2. (46)

CASE 1: Functions with Polyak-Łojasiewicz (PL) condition

In this part, we consider the case where the global empir-
ical risk function satisfies Polyak-Łojasiewicz (PL) condition.

Definition 4 (Polyak-Łojasiewicz (PL) condition). For func-
tion f over space X , suppose X ∗ := argminx∈X f(x) ̸= ∅
and denote f∗ := minx∈X f(x), then we say f satisfies
the Polyak-Łojasiewicz condition if the following holds for
some µ > 0,

∥∇f(x)∥22 ≥ 2µ(f(x)− f∗). (47)

For smooth L satisfying the PL condition, we use the
expected difference between the empirical risk of the algo-
rithm output woutput and the optimal empirical risk value as
the utility measurement of the algorithm, which is called ex-
pected excess empirical risk, i.e., E[L(woutput)−minw L(w)].

Theorem 4. [Utility upper bound under PL condition] Sup-
pose L is ι-smooth and satisfies Polyak-Łojasiewicz con-
dition over Rd. In Algorithm 2, let σ be as (41), ηt = ρ

ι ,

T >
σ2
0ϵ

2

128κ̂ log 2
δ

and T = O
(
log
(

m2ϵ2

L2d log 1
δ

)
/ log

(
ι

ι−ρµ

))
,

then we have the following utility bound for woutput = wT .

E[L(wT )− L(w∗)] ≤ Õ

(
d log2 m log 1

δ

m2ϵ2

)
, (48)

where the Õ(·) notation omits poly-logarithmic terms and
constants.

Proof of Theorem 4. By the ι-smoothness of L, we have

L(wt) = L(wt−1) + ⟨gt, wt − wt−1⟩+
ι

2
∥wt − wt−1∥22.
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According to the gradient descent step, we have

E[L(wt)− L(wt−1)]

≤ −ηtE[⟨gt, ĝt⟩] +
ιη2t
2

E[∥ĝt∥22]

= −ηtE[∥gt∥22] +
ιη2t
2

E[∥ĝt − gt∥22] +
ιη2t
2

E[∥gt∥22]

= −
(
− ιη2t

2
− ιη2t (1− ρ)

2ρ
+ ηt

)
E[∥gt∥22]

+
ιη2t
2

(
dσ2

ρm
+

ρdσ2
0

λ2m2

)
= − ρ

2ι
E[∥gt∥22] +

ρ2

2ι

(
64L2dT log 2.5T

δ log 2
δ

ϵ2m(m+
σ2
0

κ̂ ρd)

+
64L2

(
σ2
0

κ̂ d
)
dT log 2.5T

δ log 2
δ

ϵ2m2
(
m
ρ +

σ2
0

κ̂ d
) +

L2σ2
0d

κ̂m2


≤ −ρµ

ι
(E[L(wt−1)]− L∗)

+
ρ2

2ι

(
128L2dT log 2.5T

δ log 2
δ

m2ϵ2
+

L2σ2
0d

κ̂m2

)
.

Re-arranging the terms, we get

E[L(wt)]− L∗ ≤
(
1− ρµ

ι

)
(E[L(wt−1)]− L∗)

+
ρ2

2ι

(
128L2dT log 2.5T

δ log 2
δ

m2ϵ2
+

L2σ2
0d

κ̂m2

)
.

Summing over t = 1, · · · , T , we obtain

E[L(wT )]− L∗ ≤
(
1− ρµ

ι

)T
(L(w0)− L∗)

+
Tρ2

2ι

(
128L2dT log 2.5T

δ log 2
δ

m2ϵ2
+

L2σ2
0d

κ̂m2

)
.

When T >
σ2
0ϵ

2

128κ̂ log 2
δ

, it holds that

L2dσ2
0

κ̂m2
<

128L2dT log 2.5T
δ log 2

δ

m2ϵ2
,

and thus

E[L(wT )]− L∗ ≤
(
1− ρµ

ι

)T
(L(w0)− L∗)

+
Tρ2

ι
·
128L2dT log 2.5T

δ log 2
δ

m2ϵ2
.

By taking

T = O

(
log

(
m2ϵ2

L2d log 1
δ

)
/ log

(
ι

ι− ρµ

))
, (49)

we obtain that

E[L(wT )]− L∗ ≤ Õ

( ρ

log ι
ι−ρµ

)2

·
d log2 m log 1

δ

m2ϵ2

 .

For simplicity, we denote c := µ
ι < 1 and F (ρ) := ρ

log ι
ι−ρµ

=
ρ

log 1
1−cρ

. Take the derivative of F with respect to ρ, we have

F ′(ρ) =
log
(
1 + cρ

1−cρ

)
− cρ

1−cρ

log2 1
1−cρ

.

By noting that cρ
1−cρ > 0 and using the inequality that

log(1 + x) ≤ x for ∀x > −1, we know that F ′(ρ) ≤ 0. Thus
F (ρ) = ρ

log ι
ι−ρµ

monotonically decreases with ρ. Moreover,
since 0 ≤ ρ ≤ p

d ≤ 1, we know that for any possible
ρ ∈ (0, 1], we have

1

c
− 1 ≤ 1

log 1
1−c

= F (1) ≤ F (ρ) ≤ lim
ρ→0

F (ρ) =
1

c
.

Therefore, we finally obtain that

E[L(wT )]− L∗ ≤ Õ

(
d log2 m log 1

δ

m2ϵ2

)
.

Theorem 4 reveals the trade-off between privacy, utility,
and communication for OTA-FL under functions with PL
condition. First of all, we show that our algorithm achieves
the optimal dependence on the privacy budget/loss ϵ,
device number m, and model dimension d. To this end,
we establish the excess empirical risk lower bound in the
following Theorem 5 for strongly-convex risk functions,
which can be seen as a special case in the class of functions
satisfying Polyak-Łojasiewicz condition.

Theorem 5 (Excess empirical risk lower bound under PL
condition). Let m, d ∈ N, ϵ > 0, and δ = o(1/m). For every
device-level (ϵ, δ)-DP FL algorithm, there is a FL setting with
strongly convex L(·) such that, with probability at least 1/3
(over the algorithm random coins), we must have

E[L(wT )]− L∗ ≥ Ω

(
min

{
1,

d

m2ϵ2

})
(50)

Proof of Theorem 5. Let ℓ(w; ξ) be half the squared ℓ2-
distance between w and ξ, that is

ℓ(w; ξ) =
1

2
∥w − ξ∥22. (51)

For each local dataset Di = {ξi,1, · · · , ξi,n}, the local empir-
ical risk function is

Li(w) =
1

2n

n∑
j=1

ℓ(w; ξi,j). (52)

Define ξi :=
1
n

∑n
j=1 ξi,j , then we can also write Li(w) as

Li(w) =
1

2
∥w − ξi∥22 +

1

2n

n∑
j=1

∥ξi − ξi,j∥22. (53)

The global empirical risk function L(·) is

L(w) = 1

2m

m∑
i=1

∥w− ξi∥22 +
1

2mn

m∑
i=1

n∑
j=1

∥ξi − ξi,j∥22. (54)

Define ξ̄ := 1
m

∑m
i=1 ξi. The minimizer of L(·) is ξ̄. The

excess empirical risk of parameter w is

L(w)− L∗ =
1

2m

m∑
i=1

∥w − ξi∥22 −
1

2m

m∑
i=1

∥ξ̄ − ξi∥22 (55)

=
1

2
∥w − ξ̄∥22. (56)
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Let {ξ1, · · · , ξm} ⊆ {− 1√
d
, 1√

d
}d. Then by directly using

Part 2 of [41, Lemma 5.1], we can conclude that, for every
device-level (ϵ, δ)-DP algorithm, with probability at least 1

3 ,

L(w)− L∗ ≥ Ω

(
min

{
1,

d

m2ϵ2

})
. (57)

Remark 6. The impact of the limited communication band
at edge to OTA-FL is dominated by the factors related to
the compression ratio ρ. We find that the utility bound
is insensitive to ρ, i.e., the change of ρ does not change
the order of the learning utility bound. But the limit band
indeed postpones the time it takes for the learning algorithm
to achieve the best utility as indicated in the requirement of
T = O

(
log
(

m2ϵ2

L2d log 1
δ

)
/ log

(
ι

ι−ρµ

))
where a smaller ρ will

give rise to more iterations for achieving the desired utility.

CASE 2: General smooth non-convex functions

We now consider general smooth non-convex global
empirical risk function L(·). The utility of the algorithm is
measured by the expected squared ℓ2 gradient-norm of the
output model parameter, i.e., E[∥∇L(woutput)∥22].

Theorem 6 (Utility upper bound for general smooth non–
convex functions). Suppose L is ι-smooth and non-convex
in general. In Algorithm 2, let σ be as (41), ηt = ρ

ι ,

T >
σ2
0ϵ

2

128κ̂ log 2
δ

and T = O

(
mϵ

ρ
√

d log 1
δ

)
, then we have

the following utility bound for woutput = wt̊, where t̊ is
uniformly sampled from [T ].

E[∥∇L(woutput)∥22] ≤ Õ


√
d log 1

δ

mϵ

 , (58)

where the Õ(·) notation omits other poly-logarithmic terms
and constants.

Proof of Theorem 6. Similar to the proof of Theorem 4, we
have

E[L(wt)− L(wt−1)]

≤ − ρ

2ι
E[∥∇L(wt−1)∥22] +

128L2ρ2dT log 2.5T
δ log 2

δ

ιm2ϵ2
.

From this, we get

E[∥∇L(wt−1)∥22] (59)

≤ 2ιE[L(wt−1)− L(wt)]

ρ
+

256L2ρdT log 2.5T
δ log 2

δ

m2ϵ2
(60)

Summing over t = 1, · · · , T and taking the average, we
obtain

1

T

T∑
t=1

E[∥∇L(wt−1)∥22] (61)

≤ 2ι(L(w0)− L∗)

ρT
+

256L2ρdT log 2.5T
δ log 2

δ

m2ϵ2
. (62)

By T = O

(
mϵ

ρ
√

d log 1
δ

)
, we have

E[∥∇L(woutput)∥22] (63)

=
1

T

T∑
t=1

E[∥∇L(wt−1)∥22] ≤ Õ


√
d log 1

δ

mϵ

 . (64)

Remark 7. Our utility upper bound of Õ

(√
d log 1

δ

mϵ

)
for

general non-convex loss coincides with the state-of-the-art
device-level DP utility bound presented in [42] for conven-
tional federated learning without AirComp. Moreover, we
can observe that the limited communication band, captured
by the compression ratio ρ, has a similar effect as we derived
for the case of objective function with PL condition. That is,
the limited band indeed delays the convergence time of the
learning algorithm to attain the optimal utility as specified

by the condition of T = O

(
mϵ

ρ
√

d log 1
δ

)
, where a smaller ρ

implies more iterations to achieve the desired utility.

5 EXPERIMENTS

In this section, we evaluate the performance of PROBE using
real-world benchmark datasets. We will first showcase the
convergence accuracy and efficiency of PROBE in different
settings with varying system scales, privacy budgets, and
compression ratios, respectively. Then, we will also illustrate
the communication efficiency and resilience against CSI at-
tacks for PROBE. Finally, We compare PROBE with the state-
of-the-art baseline method called DPRP-FedSGD proposed
in [35].

5.1 Experiment Setup

We apply PROBE to non-convex learning tasks on two real-
world benchmark datasets, MNIST [43] and CIFAR-10 [44],
using the 18-layer residual network (ResNet-18) [45] model
for image classification. We estimate the problem-related
parameters such as ι based on the dataset and the model fol-
lowing the methods in [46], [47]. We fix δ = 10−3, σ0 = 1.0,
and ci = 0.8 for ∀i ∈ [m] throughout the experiments. We
set the number of iterations T to 20 and 50 for MNIST and
CIFAR-10, respectively. We assume that the devices have
power constraints Pi’s uniformly distributed in [25, 30]. We
use ϵ = 1.0, ρ = 0.8, α = 0.8 as the default setting for PROBE
and vary one parameter at a time to evaluate the effects of
different factors. We measure the algorithmic convergence
by the training loss. We repeat each experiment at least 10
times and report the average results in the figures.

For comparison with the state-of-the-art methods, we
use the DPRP-FedSGD algorithm from [35] as the baseline
method, which to the best of our knowledge is the only
existing work that considered differentially private OTA-
FL with communication compression. Specifically, both
DPRP-FedSGD and our algorithm PROBE are based on ap-
plying federated stochastic gradient descent for minimiz-
ing the given loss function based on the local gradients.
The main difference is that DPRP-FedSGD uses Johnson-
Lindenstrauss (JL) random projection for reducing the di-
mension of the local updates and uses a different AirComp
signal transmission strategy as we discussed in Remark 2.
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Fig. 1: Training loss versus iterations for different system scales on MNIST and CIFAR-10 datasets. The results show that
PROBE achieves better convergence accuracy and efficiency with the increased number of devices.
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Fig. 2: The effect of privacy budget on the performance of PROBE on MNIST and CIFAR-10 datasets. Larger privacy budgets
lead to lower training losses, but the improvement becomes marginal after ϵ = 2.0.

Specifically, for each local gradient gi,t, DPRP-FedSGD re-
duces its dimension using the following gradient projection
step:

ĝi,t =
1√
ρd
·Dρ ·U · gi,t, (65)

where Dρ is a (ρ · d) × d rectangular diagonal matrix, i.e.,
[Dρ]i,i = 1, i ∈ [ρ · d] and [Dρ]i,j = 0, i ̸= j, and U ∈ Rd×d

is a random projection matrix generated with entries drawn
independently from Rademacher distribution (symmetric
Bernolli taking values +1 and −1 with probability 1

2 ), or
from the Gaussian distribution of zero mean and unit vari-
ance as [U]i,j ∼ N (0, 1), or from Achlioptas distribution,
given by

[U]i,j =


+
√
s, with probability 1

2s

0, with probability 1− 1
s

−
√
s, with probability 1

2s .

(66)

After that, DPRP-FedSGD sets the vector to be sent by each
device as

xi,t =

√
ϕi,1Pi

L
ĝi,t +

√
ϕi,2Piν̄i,t, (67)

where ϕi,1 ∈ [0, 1] and ϕi,2 ∈ [0, 1−ϕi,1] denote the fraction
of power allocated to the normalized local gradient vector
1
L · gi,t and the DP noise ν̄i,t ∼ N (0, 1 · Id), respectively. The
power allocation parameters satisfy ϕi,1 + ϕi,2 ≤ 1 so that
the maximum power constraint of Pi is satisfied. In order to
form an unbiased estimate of the global gradient, all devices
pick the ϕi,1’s as:

ϕi,1 =
mini′∈[m] κi′

κi
=

κ̄0

κi
, (68)

so that the server can receive an aggregated vector where all
local gradients have the same weight:

yt =

√
mini′∈[m] κi′

L

m∑
i=1

gi,t +
m∑
i=1

√
ϕi,2Piν̄i,t + zt. (69)
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Fig. 3: The effect of compression ratio on the performance of PROBE on MNIST and CIFAR-10 datasets. Smaller compression
ratios lead to slightly slower convergence but better communication efficiency with almost the same training loss.

After that, DPRP-FedSGD updates the global model using
the gradient descent step just like our PROBE.

We will conduct two experiments for the comparison
with DPRP-FedSGD. Firstly, as we mentioned in Remark 2,
for each device, its per-round privacy guarantee offered by
DPRP-FedSGD is subject to the ratio of its individual effec-
tive SNR and the worst effective SNR across devices and the
privacy loss increases when the effective SNR becomes more
consistent. For the experiment, we will investigate how the
per-round privacy loss of the device with the largest effec-
tive SNR κmax varies when the ratio of κmax/κmin changes
for both algorithms. Specifically, we fix κmin = 12 and
change the value of κmax such that κmax/κmin varies in this
experiment. Next, we study the privacy and communication
trade-offs achieved by the two algorithms. We will let the
compression ratio ρ vary and present the privacy loss under
different compression levels.

5.2 Results and Discussions
5.2.1 Impact of system scale
We evaluate the effect of the device number m on the
performance of PROBE by varying m from 5 to 20 with

step 5. The results are shown in Fig. 1. It can be observed
that, as the number of devices increases, the training loss
decreases more rapidly and stabilizes at a lower value for
both MNIST and CIFAR-10 datasets. This trend is consistent
with our theoretical results (Theorem 4 and Theorem 6)
and the experimental findings in [26]. For instance, with
CIFAR-10, the training loss for m = 20 is significantly lower
than that for m = 5, indicating enhanced performance with
increased system scale. This is due to the privacy amplifica-
tion effect of AirComp. As m increases, each device injects
less Gaussian noise as stated in Theorem 3, which results
in a more accurate global gradient estimate as proved in
Lemma 2. Hence, PROBE can leverage the increased system
scale to achieve better convergence accuracy and efficiency.

5.2.2 Impact of privacy budget

We examine the effect of the privacy budget ϵ on the
performance of PROBE by increasing ϵ from 0.5 to 8.0 with a
factor of 2. Fig. 2 shows the results. We notice that, for both
MNIST and CIFAR-10 datasets, the final training loss value
after stabilization reduces as the privacy budget ϵ increases.
This is because a higher ϵ implies less noise addition for each
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Fig. 4: The robustness of PROBE to CSI attacks on MNIST and CIFAR-10 datasets. The final training loss is almost unaffected
by different α values, indicating the immunity of PROBE to CSI attacks. The final training loss gets lower with a larger
privacy budget or a larger system scale.
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Fig. 5: Results for comparison of PROBE with the baseline method DPRP-FedSGD.



IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024 15

device, which improves the accuracy of the global gradient
estimate as proved in Lemma 2. Moreover, with the increase
of privacy budget ϵ, the magnitude of the final training loss
decrease also gets smaller, which implies the final training
loss gets less affected by the change of ϵ when ϵ is large.
In particular, the training loss decrease when the privacy
budget ϵ exceeds 2 is considerably smaller than that when
ϵ is below 2, indicating that PROBE can balance privacy
and accuracy with a moderate privacy budget. Finally, the
results also indicate that PROBE is more affected by the
privacy budget on CIFAR-10 than on MNIST, which may be
related to the higher complexity and diversity of the CIFAR-
10 dataset. Therefore, the optimal privacy budget may vary
depending on the dataset characteristics and the required
level of privacy protection.

5.2.3 Impact of compression ratio
To study the influence of the compression on the perfor-
mance, we select different ρ ranging from 0.2 to 1.0 with
step 0.2 and run PROBE respectively. The results are shown
in Fig. 3. We can see that, from the view of training loss
versus iterations, smaller ρ values lead to slightly slower
convergence but the training losses under different com-
pression ratios are almost the same for both MNIST and
CIFAR-10 datasets. This suggests that PROBE is robust to
the compression ratio and can achieve similar accuracy
with different ρ values. However, from the view of training
loss versus communication costs, smaller ρ values cost less
communication costs to achieve the same training loss. This
indicates that a lower compression ratio can improve the
communication efficiency of PROBE to make it adapted to
limited band in practice, but at the expense of slower con-
vergence. Such an observation corroborates with our previ-
ous discussion given in Remark 6 and Remark 7. Therefore,
there is a trade-off between communication overheads and
the convergence rate of PROBE depending on the band limit.

5.2.4 Resilience against CSI attack
We test the resilience of PROBE against CSI attacks by
varying the scaling parameter α from 0.1 (the most severe
attack) to 1.0 (no attack) with step 0.1. We show the final
training loss versus α under different privacy budget ϵ or
system scale m on both datasets in Fig. 4. We observe that,
for both MNIST and CIFAR-10 datasets, the final training
loss is almost invariant to different α values under different
settings of ϵ and m. This implies that PROBE is robust to
CSI attacks and can preserve its performance regardless
of the value of α. Moreover, we also notice that the final
training loss decreases when the privacy budget ϵ is larger
or the system scale m is larger, which is consistent with
our previous results and conclusions. Therefore, PROBE can
withstand different levels of CSI attacks across different
settings with different privacy budgets or system scales.

5.2.5 Comparison with Baseline
We compare the performance of our proposed algo-
rithm PROBE with the state-of-the-art baseline method
DPRP-FedSGD on the privacy and communication trade-
offs in OTA-FL. The results are shown in Figure 5. In
Figure 5(a), we plot the privacy loss incurred by different

κmax/κmin ratios. The y-axis shows the per-round privacy
loss ϵ and the x-axis shows the κmax/κmin ratio. We can
see that PROBE achieves significantly lower privacy loss
than DPRP-FedSGD across all values of κmax/κmin. This
demonstrates the robustness of PROBE against the hetero-
geneity of the effective SNRs among devices. In contrast,
DPRP-FedSGD suffers from high privacy loss when the
effective SNRs are more consistent, which is consistent with
what we discussed in Remark 2. In Figure 5(b), we plot
the privacy loss under different compression levels. The
y-axis shows the privacy loss ϵ and the x-axis shows the
compression ratio ρ. We can see that both algorithms incur
higher privacy loss as ρ increases, which is expected due
to the information loss caused by compression. However,
PROBE still outperforms DPRP-FedSGD at all compression
levels, indicating that PROBE can achieve better privacy and
communication trade-offs than DPRP-FedSGD.

6 CONCLUSIONS

In this paper, we proposed a private and communication-
efficient framework for over-the-air federated learning at
edge. To achieve this, we designed a locally differentially
private mechanism that integrates Gaussian masking per-
turbation and random sparsification techniques. By uti-
lizing common randomness, the privacy amplification of-
fered by sparsification and AirComp successfully adds up,
which provides the best possible local privacy guaran-
tees for each edge device. Furthermore, our framework
requires lightweight computation, respects specific power
constraints of all devices, and is immune to potential CSI
attacks. All these features make the proposed framework
implement well in reality. For future work, it is interesting
to explore the interplay of privacy preservation with other
communication-efficient techniques for OTA-FL.
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[18] M. M. Amiri and D. Gündüz, “Over-the-air machine learning at
the wireless edge,” in Proceedings of the International Workshop on
Signal Processing Advances in Wireless Communications (SPAWC).
IEEE, 2019, pp. 1–5.

[19] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Exploiting
unintended feature leakage in collaborative learning,” in Proceed-
ings of the Symposium on Security and Privacy (S&P). IEEE, 2019,
pp. 691–706.

[20] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in Proceedings
of the Symposium on Security and Privacy (S&P). IEEE, 2017, pp.
3–18.

[21] M. Song, Z. Wang, Z. Zhang, Y. Song, Q. Wang, J. Ren, and H. Qi,
“Analyzing user-level privacy attack against federated learning,”
IEEE Journal on Selected Areas in Communications, vol. 38, no. 10,
pp. 2430–2444, 2020.

[22] Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and H. Qi, “Beyond
inferring class representatives: User-level privacy leakage from
federated learning,” in Proceedings of the International Conference
on Computer Communications (INFOCOM). IEEE, 2019, pp. 2512–
2520.

[23] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” Ad-
vances in Neural Information Processing Systems, vol. 32, pp. 14 774–
14 784, 2019.

[24] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating
noise to sensitivity in private data analysis,” in Proceedings of the
conference on Theory of Cryptography Conference (TCC). Springer,
2006, pp. 265–284.

[25] D. Liu and O. Simeone, “Privacy for free: Wireless federated
learning via uncoded transmission with adaptive power control,”
IEEE Journal on Selected Areas in Communications, vol. 39, no. 1, pp.
170–185, 2020.

[26] M. Seif, R. Tandon, and M. Li, “Wireless federated learning with
local differential privacy,” in Proceedings of the International Sympo-
sium on Information Theory (ISIT). IEEE, 2020, pp. 2604–2609.
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