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Abstract—Wireless local area networks (WLANs) empowered
by IEEE 802.11 (WiFi) hold a dominant position in providing
Internet access thanks to their freedom of deployment and
configuration as well as affordable and highly interoperable
devices. The WiFi community is currently deploying WiFi 6
and developing WiFi 7, which will bring higher data rates,
better multi-user and multi-AP support, and, most importantly,
improved configuration flexibility. These technical innovations,
including the plethora of configuration parameters, are making
next-generation WLANSs exceedingly complex as the dependencies
between parameters and their joint optimization usually have a
non-linear impact on network performance. The complexity is
further increased in the case of dense deployments and coex-
istence in shared bands. While classic optimization approaches
fail in such conditions, machine learning (ML) is well known
for being able to handle complexity. Much research has been
published on using ML to improve WiFi performance and
solutions are slowly being adopted in existing deployments. In
this survey, we adopt a structured approach to describing the
various areas where WiFi can be enhanced using ML. To this
end, we analyze over 200 papers in the field providing readers
with an overview of the main trends. Based on this review, we
identify both open challenges in each WiFi performance area as
well as general future research directions.

Index Terms—WiFi, WLAN, IEEE 802.11, Wireless LAN,
Machine Learning, Deep Learning, Neural Networks.

I. INTRODUCTION

Wireless local area networks (WLANS), standardized in
IEEE 802.11 and commercialized as WiFi, hold a dominant
position in providing wireless Internet access. According to
Cisco’s Visual Networking Index Forecast, WiFi’s share of
Internet traffic will increase to 51% by 2022 [1]]. Today,
WiFi 6 [2]-[4] has become state of the art for all new consumer
products and WiFi 7 [5]-[7] is already under development.
There are several reasons for the popularity of WiFi: well-
defined use cases, freedom of deployment and configuration
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(thanks to operating in unlicensed bands), as well as inexpensive
in manufacturing and highly interoperable devices.

The 802.11 protocol family has received, in recent years,
regular updates leading to performance improvements and new
features. These technical innovations provide a challenge: the
next-generations of WiFi are becoming exceedingly complex.
Specifically, each new mechanism, designed to improve network
performance, comes with a plethora of parameters which
have to be configured. Additionally, there are new application
requirements: WiFi is no longer limited to broadband Internet
access, but is also being used in other situations, e.g., ultra-low
latency communication for machine-to-machine communication.
This multi-modal operation needs to be supported through
proper configuration, which in most cases is left out of
the standard. For example, depending on the combination
of resource unit (RU) assignment in 802.11ax, the network
throughput may vary by more than 100% (i.e., between 100
and 280 Mb/s in the scenario considered in [2]). In most
cases, multiple parameters have to be jointly optimized, which
is a non-trivial task as the dependencies between parameters
and their joint optimization have a highly non-linear impact
on network performance. For example, [8]] shows that the
performance of overlapping 802.11 WiFi networks is not linear
with the sensitivity and the transmission power. The level
of complexity is further increased in the case of coexisting
networks, where diverse parameters have to be set across
multiple nodes with a multi-modal operation in mind (i.e.,
with different applications having different quality of service
(QoS) requirements).

Up till now, the goal of the mainline 802.11 amendments was
to provide high throughput (802.11n, 802.11ac) and efficiency
in dense environments through deterministic channel access
(802.11ax). However, future WiFi generations are anticipated to
accommodate also ultra-low latency and ultra-high reliability
traffic (802.11be). Hence, the proper and timely update of
the transmission settings for each class of traffic is of key
importance. Meanwhile, finding adequate or even, in the best
case, optimal configurations in an enormous search space using
traditional algorithms is too time and computation resource
consuming, i.e., by the time the proper configuration is found,
it is already out-dated as the propagation characteristics have
changed. Additionally, new WLAN mechanisms also bring
overhead in terms of additional measurements which provide
input to their respective control algorithms. In the past, with
only a few possible modulation and coding scheme (MCS)
values (i.e., in early versions of 802.11), it was possible to



250 240

200

N
o
o

150
131

N
o
o

77

Cumulative total of papers

52
35

a
o

27
21
23 o2l mmull
0 i__—----

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
Publication year

Figure 1. Cumulative number of research papers published in the area of
improving WiFi performance using ML and cited in this survey (Sections [III]
to [VII). Results for 2021 are limited to the first part of the year.

quickly test all of them and select the best one. Currently, e.g.,
the introduction of precoding techniques (with beamforming in
802.11ac) requires additional frequent channel measurements
towards associated stations, while the interference nulling
mechanism (envisioned in 802.11be) will require additional
measurements of the channels to stations in adjacent cells.
The more active measurements have to be performed, the less
channel air-time is available for actual communication.

This increasing complexity coupled with uncoordinated
deployment, distributed management, and network densification
may negatively impact the operation of future WiFi networks.
A candidate approach to solving these performance-related
problems is to apply machine learning (ML), a type of artificial
intelligence, where “algorithms can learn from training data
without being explicitly programmed” [9]]. So far, ML-based
techniques have been explored for a variety of problems in
networking [[10]-[12]. Successful solutions can be applied to
fields ranging from configuring physical layer parameters to
traffic prediction.

Recently, Kulin et al. [[11] published a survey on applying
ML for general wireless networking while Zhang et al. [13]]
reviewed almost 600 research papers on ML in 5G systems.
However, neither these nor other recent surveys (as we
summarize in Section address in detail the area of WiFi
performance improvement using ML. Indeed, WiFi is already
too complicated to be covered inside a general survey of
wireless networking with ML and requires a dedicated survey.
Additionally, a variety of papers in this area have appeared
recently (mostly since 2018, cf. [Fig. T)). Therefore, motivated
by the abundance of research papers in the area of improving
WiFi performance using ML and the lack of such a dedicated
survey, we have prepared this literature review. We specifically
target improving WiFi performance because it is an important,
well-defined, and currently relevant issue. Note that there are
three non-performance related areas involving both WiFi and
ML which are out of our scope:

o dedicated applications of WiFi (unrelated to network
access), e.g., device positioning, human activity detection,

« energy efficiency (e.g., power saving protocols), and
o network security (e.g., intrusion detection systems).

There has been broad adoption of ML in these areas and they
deserve literature reviews of their own, such as [[14]f], [15].
Furthermore, our survey does not describe how various ML
methods operate. There have been also numerous books and
research papers on this topic; we refer the reader to papers such
as [9]], [11] for a detailed (though still wireless networking-
related) treatment of these methods.

The overall structure of the survey is depicted in
together with an indication of the ML methods reported in the
state-of-the-art papers, for each of the surveyed area. After
a short summary of related surveys (Section [I), we first
investigate core Wi-Fi features in Section This section
explores, e.g., the use of ML for selecting PHY features,
optimizing channel access, configuring frame aggregation and
link parameter settings, data rate selection, as well as QoS,
admission control, and traffic classification. In Section [[V]
we study the benefits of using ML in more recent WiFi
features such as multiple-input multiple-output (MIMO) and
multiband operation, multi-user MIMO (MU-MIMO), spatial
reuse, and spectrum allocation. WiFi management is discussed
in Section [V} Here, we explore ML applicability to access point
(AP) selection and association, channel and band selection,
management architectures, and determining the health of WiFi
connections. In Section [VI[ we investigate ML-optimized
coexistence of WiFi with other technologies: channel sharing,
network monitoring, and cross-technology signal classification.
Next, in Section we study ML algorithms for multi-hop
WiFi deployments: ad hoc networks, mesh networks, sensor
networks, vehicular networks, and relay networks. Finally,
we elaborate on future research directions in Section [X] and
conclude the paper with Section [X] Appendix [A] contains the
list of acronyms used.

For the presented survey on improving WiFi performance
with machine learning, we started with a systematic literature
review methodology [16]. First, we searched for WiFi, 802.11,
and WLAN as well as machine learning in the paper abstracts
in the following databases: IEEE Xplore, ACM, Elsevier, Wiley,
and MDP]B This yielded 1189 papers, out of which we had to
remove out-of-scope papers (e.g., related to device positioning
or network security). Next, we added papers manually, usually
found through cross-citation analysis. Finally, we identified
(and cite in Sections [[IIHVII) over 200 relevant papers in total.
Additionally, we reference over 20 survey papers in Section

To summarize, our contributions are the following:

o A structured approach of describing the various areas
of WiFi performance where ML can be applied: from
core WiFi features, through recently added features, to
management issues as well as WiFi operating in shared
bands with other technologies and in multi-hop topologies.

e A review of over 200 papers in the field, to provide
readers with an overview of what has been done and what

'We could not include SpringerLink at this stage as it does not allow to
search within the abstracts of published papers. Papers from this database
where added manually.
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Figure 2. Organization of the survey and classification of research areas where WiFi network performance can be improved with ML according to the surveyed
literature. The classification of ML methods into four categories of learning (supervised, unsupervised, deep, reinforcement) is according to [9].

are the main trends of applying ML to particular WiFi
performance problems.

o The identification of open challenges in every area of
WiFi performance (at the end of each Section [[lIHVTI) as
well as the general future research directions in applying
ML for improving WiFi performance, to provide readers

with an analysis of what remains to be done in the field.

We hope that the survey will be beneficial both for beginners
as well as experts in the field, looking for a comprehensive
summary of the latest research in the area of improving WiFi
performance with ML. We also believe that this survey will
guide the readers towards proposing new ideas in this area.

II. RELATED SURVEYS

A number of surveys address the development of ML models
to support wireless networks. Reported contributions consider
the application ML to both WiFi and application-specific
networks, such as wireless sensor networks (WSNs), cognitive
radio networks (CRNSs), wireless mesh networks (WMNs), and
heterogeneous networks (HetNets). WiFi also constitutes an
important component of fifth-generation mobile networks (5G)
and the future sixth-generation mobile networks (6G), e.g., in
the case of cellular traffic offloading. Due to the convergence of
both technologies, not only concerning their operation but also
in the context of shared unlicensed bands, 5G and 6G-related



surveys provide valuable insights also for WiFi operation.
Therefore, in this survey, we also cover some aspects and
functionalities from 5G and 6G that are directly related, or
equivalent, in the WiFi area.

Regarding the direct application of ML models in WiFi,
these surveys are mainly focused on performance indicators
and the support of a variety of applications, e.g., human
activity detection, indoor localization, and network security.
The use of ML in application-specific wireless networks
focuses on challenging functionalities like self-configuration,
self-healing, and self-optimization in HetNets, bandwidth and
coverage in WMN, and dynamic spectrum access in CRN.
Regarding 5G, the surveys are mostly focused on interference
identification, link quality prediction, traffic demand estimation,
and network management. Additionally, they address the
problem of unlicensed spectrum sharing between 5G or 6G and
incumbent technologies, like WiFi. All these surveys partially
overlap with our literature review. However, since none of them
focus exclusively on Wi-Fi, neither the level of detail, contents
organization nor the number of works covered are comparable
with our survey.

A. WiFi-related Surveys

Surveys of WiFi performance-indicators cover mostly WiFi
data analytics for network monitoring [|17]] and quality indi-
cators accounting for user satisfaction [18]. Concerning the
WiFi analytics, reported ML models are used to extract useful
knowledge from big data streams produced over large-scale
wireless networks [[17]]. Additionally, ML-based solutions to
support the estimation of QoS, quality of experience (QoE),
and their cross-correlation (QoS-QoE) are surveyed in [18].
Concerning WiFi-based applications, indoor localization [14],
[19]-[21] and human activity detection [22] are the two main
covered areas. ML-based techniques are illustrated to detect,
recognize, and categorize complex patterns in order to support
these applications.

Security in WiFi is also a relevant concern addressed in
surveys [15]], [23]]. Considering that WiFi is ranked as the most
deployed wireless technology, numerous attacks exploiting
its vulnerabilities have been observed. In this direction, ML
models are used to develop autonomous and accurate intrusion
detection systems (IDSs) for WiFi networks.

B. Wireless Communications-related Surveys

Wang et al. [9] present an interesting survey, in which the
thirty-year history of ML is reviewed. It addresses the fun-
damentals of supervised learning (SL), unsupervised learning
(USL), reinforcement learning (RL), and deep learning (DL).
Additionally, it summarizes the use of ML in many compelling
applications of wireless networks, e.g., HetNets, cognitive radio
(CR), Internet of things (IoT), and machine to machine (M2M)
communications. However, their use in IEEE 802.11 networks
is only briefly mentioned. Additionally, the use of ML models
for the layer-specifics’ operation is not covered.

The applications of ML supporting physical (PHY), medium
access control (MAC), and network layers are also reported

in [24] for wireless communication networks. Novel comput-
ing/networking concepts are also addressed like multi-access
edge computing (MEC), software-defined networking (SDN),
and network functions virtualization (NFV). ML and RL
models are also illustrated for several networks types such
as 5G, low-power wide area networks (LPWANs), mobile ad
hoc networks (MANETS), and Long Term Evolution (LTE)
networks. Additionally, the survey provides a brief overview
of ML-based network security. However, once again, the area
of 802.11 networks is only briefly touched upon.

Sun et al. [10] survey a variety of applications of ML models
for resource management at the MAC layer, networking and
mobility management in the network layer, and localization in
the application layer. This survey also identifies conditions
for applying ML models to assist developers in wireless
communication systems. The utility of ML techniques in WiFi
scenarios is illustrated to implement power saving mechanisms
in APs and indoor localization applications.

Several other surveys address the use of ML models in
specific wireless networks like WSNs [25]], CRNs [26]-[28]],
and MANETs [29]]. These surveys summarize the support of
ML models to specific-related problems on these networks
like prolonged lifespan in WSNs, feature classification in
CRNs, or routing in MANETS. Only the surveys concerning
CRNSs discuss the applications of ML models in WiFi networks
(e.g., coexistence, performance evaluation, channel selection,
signal identification). However, specific details concerning the
integration of ML techniques and WiFi mechanisms are only
superficially covered.

C. WiFi and 5G/6G-related Surveys

In the 5G area, surveys focus on the PHY, MAC, and network
layers to account for interference identification, link quality
prediction, and traffic demand estimation [11]]. Through ML,
patterns are automatically extracted and trends are predicted to
optimize parameter settings at different protocol layers. Using
these patterns, a variety of effective solutions are also used to:

« analyse and manage mobile networks in several directions,
e.g., network state prediction, network traffic classification,
call details mining, and radio-signal analysis [30];

o improve the performance of mobile systems [13] and
IoT [12];

« identify wireless modulations/technologies [31]];

« provide fair and efficient spectrum sharing in 5G [32], as
well as in future 6G [33|;

o maximize the potential of unlicensed bands for Industry
4.0 applications [34].

D. Summary

State-of-the-art surveys report the wide applicability of ML
models for wireless networks. Table [ summarizes the presented
surveys per addressed technology, scope, and remarking their
corresponding WiFi-related topics.

Specifically, in the WiFi area, the reported surveys are
application-oriented focusing on human activity detection
algorithms, indoor localization mechanisms, and network



Table I

EXISTING SURVEYS CONCERNING WIFI-RELATED TOPICS AND ML MODELS.

Network Ref. Main scope Addressed WiFi feature Year
[17]  Large-scale network monitoring WiFi analytics 2020
[18]  Quality indicators accounting for user satisfaction WiFi quality indicators 2020
[14] 2020
(19] 2019
- Indoor localization
E [20] Application-oriented 2019
(21] 2018
[22]  Human activity detection 2017
[15] 2021
Intrusion detection WiFi security E—
[23] 2016
[9] Performance improvement in a variety of wireless 2020
networks like HetNets, CRNs, IoTs, and M2M Insufficient details concerning Wi-Fi functionalities
E [24]  Performance improvement in the PHY/MAC/Network 2020
3z <Z: layers as well as novel computing/networking concepts
§ = (MEC, SDN, NFV)
a E [10] ML models to support resource management, network- Power saving mechanisms for WiFi infrastructure, indoor 2019
§ E' ing and localization in wireless networks localization mechanisms
o Z
§ 6 [26]  Decision making and feature classification in CRNs Collaborative coexistence of WiFi networks with other tech- 2013
= nologies, performance evaluation, dynamic channel selection
)
= [27] ML models to support cognitive radio capabilities Collaborative coexistence of WiFi networks with other tech- 2013
nologies
[28] ML models to support cognitive radio capabilities WiFi signal identification 2010
[11]  Broad survey covering data science fundamentals, 5G, Insufficient details concerning WiFi functionalities 2020
Wi-Fi, CRN General networking concepts like interfer-
ence recognition, network traffic predictions, and MAC
) identification
©
2 132) 2020
- Coexistence mechanisms in 5G networks Coexistence of 5G and WiFi e
E 135] 2018
=
= [13]  Mobile and wireless networking research based on deep  Indoor localization applications and signal processing in WiFi 2019

learning

networks

security issues. In the wireless networks area, the surveys in
general provide few details concerning the use of ML models to
improve performance of the 802.11 protocol family. The most
often surveyed topics are the coexistence of WiFi networks
with other technologies, its performance evaluation, channel
selection mechanism, and signal identification in the context of
cognitive radio technologies. Finally, concerning the 5G/6G and
WiFi area, in the surveys the conception of spectrum sharing
mechanisms to articulate coexistence mechanisms between
the two networks is mostly covered. Therefore, the lack of a
dedicated WiFi performance survey coupled with the variety
of research papers addressing the specifics of using WiFi with
ML have motivated our work, which we hope will be
valuable to the research community.

III. CORE WIF1 FEATURES

The new IEEE 802.11 amendments introduce a variety of
functionalities for ensuring robust network operation. The

current state of the network is available through performance
metrics both at the user as well as the AP level, along with
historical data. The availability of this information provides a
favorable environment for ML methods. In the literature, many
ML solutions have been proposed for 802.11’s PHY and MAC
layers to adaptively optimize the internal parameters of WiFi’s
core features in dynamic scenarios (Table [Il). Additionally, the
capability of ML-based methods to gain knowledge, generalize,
and learn from past experience allows conceiving smart systems
using augmented functionalities of the IEEE 802.11 standard.
In this section, we cover core WiFi features (such as channel
access, rate selection, frame aggregation settings, mitigating
interference) and summarize the open challenges.

A. Channel Access

Channel access mechanisms are perhaps the most often
addressed topic concerning the improvement of WiFi perfor-
mance with ML. Proposed optimizations refer mostly to the



Table II

SUMMARY OF WORK ON IMPROVING THE PERFORMANCE OF CORE WIFI FEATURES WITH ML.

Area Ref. ML category ML mechanisms Year Evaluation method
[136] RL QL 2012 Simulation
1371 RL PDS 2015 Theoretical
138] SL RF 2019 Simulation
Channel access (391 RL QL 2019 Simulation
(Section [[IT-A) [40] SL fixed-share 2019 Simulation
[41] RL QL 2020 Simulation
[42] RL QL 2020 Simulation
143 SL DT 2020 Simulation
[44] RL QL 2020 Simulation
[45]] RL QL 2021 Simulation
[46] DL DRL, DQN, DDPG 2021 Simulation
147] DL federated DQL 2021 Simulation
48] DL federated DQL, QNN 2021 Simulation
[49] DL Stochastic learning 2008 Simulation
[50] SL RF 2013 Simulation
151] DL ANN, MLP 2013 Simulation
152] RL MAB 2016 Simulation
53] SL RF 2018 Experimental
Link configuration 154] SL ANN 2020 Experimental
(Section [[T-B) 1541 RL ANN 2020 Experimental
155] RL MAB 2020 Experimental
156] DL DQN 2020 Experimental
157] Online learning TS 2020 Simulation
58] RL QL 2021 Simulation
159] DL DQN 2021 Experimental
[60] DL ANN 2009 Simulation
155]) SL M5P, RFR 2019 Simulation
Frame format, packet aggregation [61] SL RF 2020 Simulation
(Section [ITI=C)) 162] SL MS5P, RF 2020 Experimental
163] SL ANN 2020 Experimental
[64] SL SVM 2021 Simulation
[65] USL EMA 2010 Experimental
[66] SL NB, NBT, J48DT, SVM 2012 Experimental
167] SL NB, NBT, J48DT, SVM 2015 Experimental
168]] SL RT 2015 Experimental
Traffic prediction 1691 DL ANN 2019 Simuation
(Section [70] ML DPPL 2019 Theoretical
[71] DL ANN 2019 Simulation
172] DL RNN 2019 Experimental
73] RL QL 2019 Simulation
[74] RL SARSA 2020 Simulation
175] SL SVM 2006 Experimental
PHY features [76] DL ANN 2011 Experimental
(Section [[IT-E) 1771 SL MLP, SVR, DT, DF 2020 Experimental
78] DL RNN 2020 Experimental
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Figure 3. WiFi channel access (DCF) supported by ML models. Dashed
arrows represent observation and solid lines represent actions.

basic 802.11 MAC protocol, i.e., the distributed coordination
function (DCF), which is the baseline mechanism to avoid
collisions among devices when accessing a common radio
channel [79].

The main parameter responsible for the performance of DCF
is the contention window (CW). It defines the range from which
stations randomly select their waiting periods (i.e., the backoff
counter) to avoid collisions when accessing the channel. Larger
CW values reduce collisions, but increase idle times, which
in turn reduces throughput. Smaller CW values increase the
chance for a node to transmit, but also increase the collision
probability, thereby reducing throughput. Determining proper
CW values to maximize throughput by reducing both collisions
and idle time periods is the focus of multiple research studies,
where SL and RL models are typically applied. Loss functions
and rewards are addressed in the form of reduced collisions
[39], [43]], increased difference between successful and collided
frames [36]], improved channel utilization [38]], increased
successful channel access attempts [40], [48], throughput [46],
network utility [80]], and a combination of throughput, energy,
and collisions [37]]. As summarized in [Fig. 3] SL [38]], [40]], RL
[36], [37]], [45], deep reinforcement learning (DRL) [39], [46],
[48]], and federated learning (FL) [47]], [48] models are applied
to the IEEE 802.11 standard [37]], [48] and its amendments,
most importantly 802.11ac [38]], 802.11e [36], [43], 802.11n
[40], and 802.11ax [39], [46]]. We provide a summary of the
major findings next.

In high-density 802.11ax WLANSs, RL with the intelligent
Q-learning based resource allocation (iQRA) mechanism is
considered by Ali et al. [39]. Instead of resetting the CW value
whenever the channel is idle (as in DCF), CW calculated by
considering the channel collision probabilities according to the

channel observation-based scaled backoff (COSB) protocol [81]].

In this direction, the cumulative reward (accounting for the

probability of collisions) is minimized by optimally adjusting a
policy to update the CW size. The iQRA mechanism increments
or decrements CW (according to COSB), finding a balance
between optimal actions (concerning the best policy to reduce
the collision probability) and exploring new actions to account
for the dynamicity of WiFi environments. Results obtained
from the ns-3 network simulator for both small (15 station)
and dense (50 station) networks show that the proposed
solution outperforms the baseline 802.11ax protocol in terms
of throughput while delay remains similar.

Considering as a reward the difference between successful
transmissions and collisions, the work in [36] implements a
programming paradigm called adaptation-based programming
(ABP). ABP is used to optimize the specifics of RL concerning
two possible actions: halve the CW size or leave CW unchanged
after a successful transmission. Simulations performed in ns-2
with 20 stations showed a reduction of the total number of
dropped packets by four.

The random forest (RF) algorithm is applied in a supervised
manner to balance the minimum CW size among users and
accounting for fair channel access [38]]. The algorithm departs
from monitoring channel variables (i.e., busy time, channel
occupancy by the user, a number sent frames) to build a
decision tree regarding the variety of settings. The algorithm
is implemented in indoor 802.11ac scenarios with up to 8
nodes. Throughput, latency, and fairness are improved by
153.9 %, 64 %, and 19.34 %, respectively, when compared to
the 802.11ac standard.

The size of the CW can be also adjusted by directly
increasing the access to the channel through the fixed-share
algorithm [40]]. CW is derived by weighting a set of possibilities
on the CW range predefined in advance, where the larger the
weight, the larger the influence of the particular CW value.
Whenever a successful transmission occurs, the weight for
users with the largest CW is reduced to increase the chances
of transmissions, and the weight of users with a less CW
is increased (the contrary occurs after a collision). With this
mechanism, a balance is achieved between aggressive (small
CW) and non-aggressive (large CW) users to achieve better
channel access probabilities among users. Simulations in ns-
3 randomly deployed senders show that in a heavily loaded
scenario (100 users), throughput is improved by 200 %, and
the end-to-end delay is reduced by 33 % when compared to
DCFE.

Addressing the scalability of 802.11ax networks, a DRL
model is applied to provide stable throughput for an increasing
number of stations [46]]. A centralized solution is applied
for two trainable control algorithms: deep Q-network (DQN)
and deep deterministic policy gradient (DDPG). A three-
phase algorithm is designed to (1) evaluate the history of
collision probabilities, (2) the training of both DRL models by
maximizing the reward (throughput), and (3) their deployment
in the network. The algorithm is implemented using ns3-gym
[82] with a single AP and up to 50 stations. Compared to
the 802.11ax standard, which leads to a decreased network
throughput up to 28 %, the two algorithms exhibit a stable
throughput value for an increasing number of stations.

A post-decision state-based (PDS) learning algorithm is



applied in [37] to take advantage of previous knowledge of the
system components such as the CW and the transmission buffer
occupancy. In contrast to Q-learning (QL), PDS achieves faster
convergence to optimally compute the CW when asserting its
value in specific states. For instance, when the channel is free
and the station is waiting to transmit, it is certain that the
CW will be reduced by one. In such a case, the corresponding
transition probabilities do not have to be learned, thereby
increasing the convergence speed by eliminating exploration
actions. The solution exhibits enhanced throughput, expressly
with moderate network load, in comparison to the Q-learning
algorithm, the 802.11 standard, and alternative deterministic
mechanisms like exponential-increase exponential-decrease
(EIED).

The CW can be also adjusted considering user fairness
metrics [48]]. To that end, FL and Q neural network (QNN)
models are implemented in APs and stations, respectively, as
a distributed method. Considering that each station will have
random initialization of its QNN parameters, some stations
will use a more aggressive strategy to get access to the channel
(small CW), which in turn will block the transmissions of
these stations initialized with a less aggressive strategy (large
CW). The AP obtains a global model of the QNN through
FL and later broadcasts it to stations. Simulation results for a
single AP and a total number of stations up to 50 show that
throughput is improved by 20 % when compared to the DCF.

Considering user fairness, an improved DQN is trained for
distributed deployment at stations [45]. The DQN improvement
is achieved through rainbow agents [83]], which incorporate
double DQN, prioritized reply, duelling networks, multi-step
learning, distributional RL, and noisy nets. The ns-3 simulation
results, for 32 nodes transmitting at a constant rate of 1 Mbit/s,
show that the proposed solution achieves results close to an
optimal solution and it is superior to an RF-based method.

Driven by the needs to distinguish between traffic priorities,
DCF is extended to enhanced distributed channel access
(EDCA) in the 802.11e amendment to support QoS [84]]. To
that end, new medium access parameters are introduced per
traffic class (access category): CW, arbitration inter-frame space
(AIFS), and transmission opportunity (TXOP) Limit. The AIFS
accounts for the waiting period before starting a transmission
or invoking a backoff counting. The TXOP Limit specifies the
time limit on a granted TXOP [85]]. AIFS together with the
CW account directly to balance the trade-off between delay
and throughput. In this direction, a three-phase scheme is
implemented in [43]] to select the best combination of CW
and AIFS supported by ML. In the first two phases, a range
of AIFS and CW values are selected relying on decision tree
algorithms like J48 for classification and M5 for prediction.
Then, in the third phase, the best combination for AIFS and
CW are derived. Simulation results exhibit high accuracy on
the throughput prediction when varying the CW range, AIFS,
and the total number of stations.

Accounting for channel priority, in the EDCA distributed
scheme, a QL model is implemented to infer network density
and adjust the CW value [42]]. In EDCA, the CW is set to be
smaller for high priority traffic like voice and video. The
optimal CW value is derived for the four different traffic

priorities defined by EDCA. Simulation results are derived
in the ns-3 simulator, where the throughput per traffic type is
improved in comparison to the standard EDCA mechanism.

Additionally, collisions can be avoided when implementing
channel access mechanisms where users are scheduled per time
slots as indicated in [41]. In this approach, each node stores a
table consisting of the available time slots in which a given
frame to be transmitted. The available time slots are selected
by an RL method to find appropriate actions when occupying
the channel.

Finally, Kihira et al. [44] consider a channel access problem
between two APs: the protagonist, which is equipped with an
agent, and a second AP called the ‘outsider’. In the paper,
the time is divided in slots, where both APs can decide to
transmit independently. Therefore, the goal of the agent in
the protagonist AP is to find the transmission probability that
maximizes its throughput based on learning the behavior of the
outsider AP. To do so, the authors rely on a robust adversarial
reinforcement learning framework, that uses game theory to
model the interactions between the two APs, and is able to
learn the best transmission policies through Q-learning.

B. Link Configuration

In response to growing user demands, the IEEE
802.11n/ac/ax amendments implement high-throughput wireless
links through dedicated features at the PHY and MAC layers
[57]. For example, IEEE 802.11ax provides data rates up
to 9 Gbit/s using eight spatial streams (SSs) and 160 MHz
channels. Such high data rates are achieved through a variety
of functionalities at the PHY layer including channel bond-
ing, multi-SS transmissions, the use of short guard interval
(SGI), and high modulations (1024-QAM for 802.11ax) [52],
[86[, [87]. At the MAC layer, frame aggregation and block
acknowledgment are the two main features for improving the
maximum link throughput.

Link configuration, in the form of selecting appropriate
PHY and MAC parameters, is required to achieve optimum
throughput for given network and channel conditions. Consider
rate adaptation, i.e., the selection of MCS values for each
transmission, which needs consider fluctuating channel condi-
tions. In dynamic WiFi scenarios (e.g., due to user mobility
or interference), rate adaptation deals with the following
counteracting mechanisms: (i) on one hand, high data rates
may lead to high error rates when decoding the transmitted bits,
thereby reducing throughput; (if) on the other hand, reducing
the data rate may incur poor channel utilization and thus also
reducing throughput. It is then appropriate to evaluate the
trade-off between transmission errors and channel utilization
by applying ML models, particularly to deal with the varying
channel conditions in WiFi networks. depicts how ML
models can be used for rate selection. In the following, we
summarize the contributions in the area of support the optimal
selection of MCS and SGI values, and a variety of trade-offs
at the PHY.

1) Rate Adaptation: Rate adaption solutions reported in the
literature predict the probability of successful transmissions
for each MCS candidate. Then, the data rate is selected
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Figure 4. Rate selection supported by ML models. Dashed arrows represent
observation and solid lines represent actions.

corresponding to the MCS with the best result. They either rely
on the estimated signal to noise ratio (SNR) [50], [54] or follow
a cross-layer approach based on acknowledgment (ACK) or
negative acknowledgment (NACK) feedback [49], [51]], [58].
SNR is preferred to timely update the channel status when
dealing with station mobility, e.g., in case of vehicular ad doc
networks (VANETS) [50]]. However, more accurate solutions
are obtained when updating the channel status based on the
ACK and NACK feedback [50].

Using the SNR metric, throughput can be improved through
a two-level data rate search algorithm based on an artificial
neural network (ANN) model [54]] or using an RF algorithm
[50]. In the former, the ANN is implemented as a coarse
estimator to find a possible set of best data rate candidates. In
the second stage, a fine-grained solution is devised to identify
the best candidate from this set. With this solution, at least a
25 % improvement was is reported in mobile scenarios when
compared to baseline rate adaptation algorithms. In [50]], the
RF algorithm is implemented for the uplink data rate adaptation
in VANETSs. The algorithm uses the position and velocity of
cars to estimate the SNR in the link between the APs and the
vehicle. The algorithm predicts the probability of successful
transmission for each possible data rate candidate, and then
selects the best candidate. With this approach, the goodput is
improved at least by 27 % in comparison to reported solutions
like collision-aware rate adaptation (CARA).

However, the unpredictable impact of fast fading de-
correlates the correspondence between SNR and packet losses
due to their large fluctuation in short time periods. To deal
with this problem, Joshi et al. [49]] implement a variant of the
stochastic automata rate adaptation (SARA) without assuming
any predefined relation between SNR and packet losses. The
algorithm updates a selection probability vector in a one-
to-one mapping with the available data rates. The learning
procedure is implemented to adjust this vector, with throughput
being the reward function, while the ACK frames are used
as a feedback to account for the channel condition. Thus, the
probability corresponding to the rate that produces the best
reward is updated. After selecting the data rate resulting with

the highest probability of successful transmission, throughput
can be improved by around 15% in comparison to other
reported solutions.

Thresholds to detect successfully and non-successfully
received packets can be derived through ML models to improve
aggregate throughput also by counting received ACKs [51].
Based on the auto rate fallback (ARF) algorithm, the data rate
is increased or decreased when the total number of ACK
are higher than a given threshold. Using an ANN, these
thresholds are adjusted when estimating their correlation to the
achievable throughput considering the total number of stations,
channel conditions, and traffic intensity. Using this solution,
the aggregated output can be increased by 10 % in a network
of 10 stations.

Rate selection can also be performed by first identifying
the channel condition, e.g., using supervised learning [53]]
or Q-learning [58]. In the former, the channel condition is
classified as residential or office environments, then the proper
MCS level can be selected. The model is trained based on
selected characteristics of an 802.11 frame’s preamble. In the
Q-learning model, the MCS level is adjusted based on the
total number of received ACKs. Observation of the network
state is conceived through the timeout events, which is referred
to the total number of not received ACKs. Simulations are
implemented in ns3-gym [82] considering a dynamic scenario,
where the receiver node moves away from the sender at a speed
of 80m/s [58] with throughput comparable to Minstrel [88].

Alternatively, MCS can be selected considering also the
available bandwidth and selected spatial streams. Chen et al.
[S9] applies the double deep Q-network (DDQN) model
using goodput as a reward and also includes further learning
techniques like prioritized training, history-based initialization,
and adaptive training interval. Results show that the proposed
method, implemented in hardware, significantly outperforms
default mechanisms.

2) SGI Adaptation: Selection SGI values is another link
configuration mechanism which can be supported by ML
models [57]. The SGI assumes two (802.11ac) or three
(802.11ax) different values. The selection between them can
be implemented through Thompson sampling (TS), an online
learning mechanism, to deal with the fluctuation of channel
quality (signal interference, signal fading, and attenuation).
A TS model was tested through simulations in ns-3 for an
802.11ac network with up to 40 stations. The SNR was varied
randomly in the range of 20-60dB and the results showed
a slight throughput improvement compared to the static SGI
settings.

3) PHY Layer Trade-offs: There are a variety of trade-
offs inherent to the PHY layer: wider channels versus more
interference, MCS versus required SNR, frame aggregation
versus packet loss, etc. These trade-offs may be jointly
addressed to optimize the overall performance using ML
methods such as multi-armed bandit (MAB) [52]], [89]-[91]]
and DL [56].

The authors of a series of papers [52], [89]-[91] design an
online learning-based mechanism based on the MAB framework
for link configuration in IEEE 802.11ac networks. The solution
takes into account both network load and channel conditions,



and uses a MAB-based adaptive learning (AL) methodology
(i.e., the e-greedy algorithm) along with fuzzy logic. Through
this approach, the network performance is improved thanks
to the ability to explore multiple configurations. The resulting
implementation exhibits an increased throughput (up to and
358 %) when compared to reported solutions like MU-MIMO
user selection (MUSE) [89]].

Addressing several parameters from the PHY and MAC
layers simultaneously (channel bonding, MCS, and frame
aggregation settings), a two step algorithm is conceived in
[56] to improve throughput. First, a deep neural network
(DNN) is applied to estimate throughput assuming different
link parameter settings. Then, a predictive control-based search
algorithm is applied to find the optimal parameter values
which maximize throughput. Experimental results are obtained
through IEEE 802.11ac client boards installed on laptops.
Results exhibit superior performance concerning delay and
throughput in comparison to three baseline algorithms.

Rate adaptation algorithms are also designed for specific ap-
plications in industrial networks [74]]. An RL-based mechanism
is used to solve the trade-off between reduced packet losses
and increased rate of transmission. The learning procedure
is implemented through the state action reward state action
(SARSA) algorithm, and the balance between exploration and
exploitation is conceived through the e-greedy algorithm. With
this approach, packet losses are reduced by 6 % when compared
to non-RL-based algorithms. Additionally, to account for the
industrial network, packet delay is assessed to illustrate the
improved performance of the implemented RL-based approach.

C. Frame Aggregation

Frame format and packet aggregation are two main tech-
niques directly impacting the communication efficiency in terms
of useful transmitted data and overhead introduced by headers
and preambles. User data packets are amended with PHY and
MAC layers headers to account for the proper functioning
of the protocol. The resulting frame inevitably reduces the
available resources to transmit useful data due to the introduced
overhead. In this regard, ML models are proposed to maximize
the efficiency when increasing the frame size by aggregating
packets with a unique sequence for the preamble, that is,
reducing the number of individual transmissions [92].

In this case, efficiency is analyzed in terms of errors produced
during the packet decoding. Larger frames can lower the
impact of overhead but they can are also more susceptible
to transmission errors. This trade-off is addressed by frame
aggregation techniques to derive the optimum frame size to
maximize efficiency. To that end, the 802.11 standard introduces
two basic aggregation methods: aggregated MAC service data
unit (A-MSDU) and aggregated MAC protocol data unit (A-
MPDU) [2]. These aggregations can also be used together
[85]].

The A-MSDU method is more efficient but more prone to
errors than A-MPDU, since it contains only one frame check
sequence (FCS) accounting for all the aggregated frames. The
A-MPDU method is more robust but introduces more overhead
as it generates several FCSs, one per each sub-frame. However,
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their dynamical adjustment in the 802.11 standards is not
designed to deal with the varying channel state information
(CSI) in wireless links.

To optimally select the frame size under dynamic conditions,
ML techniques are used, including supervised learning [61]],
[62]], [64], online learning [S5]], and ANN [60], [63]] models.
Their use is reported in the 802.11n standard to maximize
goodput [61]], [62]], in 802.11 networks to maximize throughput
[60], and in 802.11ac for addressing the energy-throughput
trade-off [55[]. Furthermore, ML methods are also reported
to estimate the aggregation levels in 802.11ac, which is not
typically accessible by non-rooted mobile handsets [64].

Specifically, a low computational complexity technique is
implemented in the downlink direction in [61]. An random
forest regressor (RFR) model is used to properly combine the
aggregation and MCS settings. Exhibited results are obtained
for small and medium-sized networks up to 20 stations.
This solution lowers the rate of re-transmission resulting in
goodput improved by 18.36 % when compared to legacy 802.11
aggregation mechanisms.

Aggregation methods supported by ML are also designed
for software-defined WLANs (SD-WLANSs) as an artificial
intelligence (Al)-based operating system [62]. The M5SP and the
RFR models are implemented due to their low computational
complexity. Intended to provide a frame length that maximizes
goodput for each user, their training is performed with real
measurements in a WiFi scenario with up to 10 stations. Here,
the RFR model presents the highest goodput improvement
(55 %) when compared to the A-MSDU mechanism.

The MCS level can be also predicted through an ANN as
presented in [[63]]. The model is trained in a client device by
receiving packets from an AP using all the available rates
within a 1s time window. Estimated rates are then used to
compute the best aggregation level using a previously designed
(non-ML) method [93]]. Regarding throughput, the implemented
solution outperforms baseline algorithms by at least 13 %.

Designing aggregation level estimators can help in queue
backlogging. Hassani et al. [64] use ML techniques on obtained
hardware-level timestamps to determine the aggregation level



implemented at a given AP. A logistic regression estimator
model is used to devise an accurate aggregation level estimator
with low computational complexity. The solution is imple-
mented in non-rooted hardware as client nodes, where the
achieved accuracy to determine the proper aggregation level is
close to 100 %.

Frame aggregation settings can also be consider the asso-
ciated energetic costs [55]]. Based on the channel condition
(given by the SNR value), the aggregation level is selected
as the ones with the less frame error rate (FER) to reduce
the energetic costs caused by re-transmissions. The solution
is a combination of an online learning algorithm to define a
set of suitable aggregation levels and fuzzy logic to select the
most suitable level from that set, by estimating which frame
size would have the lowest FER. Following this approach,
the resulting energy efficiency with 10 stations is 14 % better
when compared to the standard use of A-MSDU and A-MPDU
mechanisms.

Finally, channel condition and impact of collisions are jointly
addressed in [[60]] to adjust both the frame size and CW. An
ANN model is trained with frame size-throughput patterns to
provide a gradient indicating the direction of the optimal frame
and the CW sizes. Simulation results, provided for 10 mobile
users, show that throughput is when compared to the case that
only the frame size is optimized and without considering the
optimal CW.

D. Traffic Prediction

Traffic prediction techniques play a major role in assisting
network management operations for better short and long
term planning. Proper planning, using methods such as traffic
forecasting, congestion control, power saving, bandwidth
allocation and buffer management, leads to improved user
QoE For instance, based on the predicted traffic, APs may
perform better load balancing, while a given AP may perform
adequate admission control.

Real-time traffic prediction becomes a challenging problem
in WiFi networks due to varying channel conditions, changing
network topologies, and random user traffic. Traffic estimation
is also dependent on several other parameters, such as the
total number of users in the network, the SNR on the link,
or the communication capabilities of users and APs [77]]. In
such scenarios, ML models are used to deal with the diverse
conditions of WiFi networks, otherwise intractable through
analytical methods. As summarized in ML models
are used to augment legacy 802.11 devices through support
vector machine (SVM) [75], recurrent neural network (RNN),
multilayer perceptrons (MLP), support vector regressor (SVR)
and polynomial regression [94], decision tree (DT), RF [77],
or ANN [76], [78].

Specifically, the solution proposed in [75]] trains an SVM
to predict the traffic evolution one step ahead. Besides,
by recursively applying the one-step-ahead solution, traffic
estimation for [-step-ahead is also conceived. The SVM model
is implemented as a Gaussian radial basis function and trained
with 100 samples to predict the next 100 samples. Through
the SVM model, the error to predict the upcoming traffic is
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Figure 6. Illustration of the traffic prediction capabilities of ML models.
Dashed arrows represent observation and solid lines represent actions.

reduced at least by 33 % when compared to the performance
of the ANN.

Khan et al. [[77] analyzed the most suitable ML models
to predict traffic among MLP, SVR, DT, and RF. To train
these models, several features are extracted from simulation
and real data (using the Wireshark network trace) namely
the number of connected users, signal strength, modulation
scheme, data rate, inter-arrival time, packet arrival rate, number
of re-transmissions, and several other channel parameters. The
solutions are implemented in a WiFi network consisting of
10 users and a single 802.11 AP. The reported prediction
accuracy presents a maximum value of 96.2 %, 94.5 %, 93.3 %,
and 91 % using MLP, DT, RF, and SVR, respectively. The
study also analyses the complexity of these mechanisms in
real-time schemes by reporting the time elapsed for each model.
The highest time-consuming model is MLP followed by RF,
SVR, and DT.

Dealing with large-scale traffic prediction, the work in [[78]
deploys an RNN on an SDN framework. The model is trained
to improve the prediction accuracy by minimizing its mean
square error (MSE) metric. The model is evaluated with 23
nodes interconnected through 38 different links. The resulting
prediction error is 10 units of magnitude-order less than feed
forward neural network (FFNN) and traditional linear prediction
models like autoregressive moving average (ARMA).

Barabas et al. [76] use ANNs operating in the multi-task
learning (MTL) paradigm to improve prediction accuracy.
Following this paradigm, three upcoming traffic values are
predicted instead of one. The network is trained with three
tasks simultaneously, which improves the accuracy of the
network. The learning procedure is implemented through multi-
resolution learning (MRL) by decomposing the traditional
learning into three stages. A wavelet transform is used to
provide this decomposition by filtering the data set into its low
and high-frequency band representation. The network is trained
first with coarse resolution, then with finer ones, and finally
with the original resolution of the data set. Results exhibited
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the best performance when having 4 nodes, 5 hidden neurons,
and 3 outputs.

Finally, network congestion levels are also predictable with
SL and USL models [94]. Based on captured data attributes
like the number of clients, throughput, frame retry rate, and
frame error rate, SVR and polynomial regressor models are
applied to predict the same values for a certain location, day,
and time. These predicted values are then fed to the expectation
maximization (EM) algorithm to predict congestion levels by
forming three different clusters. Each cluster is identified with
high, medium, and low congestion levels based on the numeric
value of the clustered samples. Results are presented after
collecting data in a network of over 1200 APs distributed in
an area of 1.17 km? with more than 80 buildings. The obtained
accuracy is 24 %, 50 %, and 26 %, for a low, medium, and
high level of congestion.

E. PHY Features

At the PHY layer, a variety of actions can be supported
by ML techniques to improve the performance of WiFi
networks. Issues that can be addressed include collision
detection characterization [65]] and its mitigation [[66]], [67],
interference power-level characterization [[70] and its mitigation
[73], signal de-noising [69], source detection to improve
spectral efficiency [95]], prediction of signal strength variability
[72], or the enhanced modeling of the PHY and MAC layer
interactions to improve throughput [68]. As depicted in [Fig. 7|
a variety of ML models are available to deal with these effects
and the variable conditions of WiFi networks in terms of the
total number of users, power level, CSI, etc.

To estimate the number of collisions in the channel, the
activity of nodes in the network can be modeled as a hidden
Markov model (HMM) [|65]. The approach is to use RL
techniques to learn the parameters of such models, then to
mathematically evaluate the probability of collisions. The

transition probabilities are assessed through the expectation
modification algorithm (EMA). Based on the derived transition
probabilities, the probability of collisions is directly computed
based on the estimated total number of senders that simultane-
ously transmit. Results are provided by estimating deferring
probabilities performed by deploying 7 APs and an equal
number of clients over two floors of a building. The estimated
deferring probabilities exhibit a good correspondence with the
real condition scenario.

To reduce collisions, produced by the ambiguous decoding of
request to sends (RTSs)-like frames, the solutions in [[66], [67]
implement an ML model. A Bloom filter is conceived to decode
the RTS frames, and a supervised ML technique is used to solve
their inherent ambiguity with an accuracy larger than 99 %.
The ML is implemented through a variety of algorithms such
as naive Bayes, naive Bayesian tree, J48 decision tree, and
SVM. Additionally, this solution is connected to a second,
Ke-greedy algorithm for channel allocation. The integration of
both algorithms allows improving the performance 3.3 times
over the legacy 802.11 operation.

The interference level can be estimated by modeling the
network through a determinantal point process (DPP). Saha
and Dhillon [70] present such a model, in which a supervised
learning process is implemented to evaluate the total number
of active transmitters that may interfere with each other as well
as their locations. Interference is then evaluated by providing
the cumulative density function (CDF) for the total number
of active users. This is then used when modeling the power
of the interference signals through a path-loss model for each
link. Results illustrate a good match with the theoretical model
Matérn hard-core processes (MHCP) regarding the CDF of
interference levels.

Interference can be also mitigated by jointly optimizing
the transmitted power of APs and the channel allocation
policies [73]. An RL model is implemented with the Q-
learning algorithm to maximize throughput in dense WLANS.
The model is trained through a learning process of reduced
total iterations driven by an event-triggered mechanism, i.e.,
whenever the network status changes due to the mobility of
users, the learning process is called again to optimize power and
channel allocation policies. Results are derived based on the
deployment of 15 APs, where a 16 % throughput improvement
is obtained in comparison to traditional power and channel
allocation mechanisms.

The received signal strength can be predicted though deep
learning techniques [72]]. In an RNN model, encoder and
decoder components are implemented to capture the CSI
and predict its variability, respectively. The model is trained
according to the three different schemes to balance the trade-off
between convergence speed and performance: guiding training
which used the current measured signal strength (resulting in
faster convergence), unguided training which uses the predicted
signal strength (resulting in better prediction performance), and
curriculum training which combines both previous methods
to balance the speed and prediction performance. With the
curriculum training scheme, the resulting prediction accuracy
of the signal strength is improved when compared to linear
regression and auto-regression methods.



The quality of the received signal can be also improved
at the PHY layer using DL techniques [69]]. With an ANN,
the preamble of the 802.11 family protocols can be de-noised
by unfolding the useful signal from noise in the spectrogram
domain (i.e., time-frequency domain). It is proposed that the
spectrogram is processed as an image, where the ANN is used
as a convolutional de-noising auto-encoder to estimate the
originally emitted patterns. Using this approach, the derived
reconstruction accuracy is around the 85 %.

The spectral efficiency of WiFi transmissions can also be
improved when avoiding the exposed terminal problem. To
that end, senders can be identified according to their CSI to
later predict whether they will interfere with each other [95].
To implement such an identification mechanism, a model is
trained through k-nearest neighbor (kNN) and ANN with 20
wireless nodes in indoor scenarios, where an accuracy of 90 %
is achieved with at least 30 samples per node. Besides, in case
of reduced total samples, better performance is obtained with
the KNN model.

The PHY layer can be also modeled in unison with the
MAC layer to characterize the impact of different features
on observed throughput [[68]]. The selected input features are
received power, channel width, spectral separation between
users, traffic load, and physical rates. The idea is to find a
mathematical function that maps input features to throughput
values supported by supervised ML. This mathematical function
then becomes a black box representation of a given link to
later optimize throughput. The learning phase, which is used to
obtain this function, is derived through regression techniques:
regression tree, gradient boosted regression tree (GBRT), and
SVR). In particular, it is found that GBRT and SVR provide
the most accurate results.

FE Open Challenges

From the multitude of papers addressing core WiFi PHY
and MAC features, we have identified several open challenges
related to studying more realistic settings, removing common
simplifying assumptions, and improving ML-based solutions.
We describe these challenges below.

First, there is a need for more more realistic simulations.
Several reports address the intention to provide simulation
testbeds with less simplifying assumptions. For instance, the
inclusion of more realistic channel and traffic models, variable
channel condition per user, dense networks, or the addressing
of multi-hop networks are some remarked requirements to
conduct further research as remarked in [36], [39], [40], [46],
(491, [74], (84, (85

Second, studies needed to consider overall network per-
formance. Currently, papers address specific optimization
parameters under specific conditions. Although some work
is reported to simultaneously address a variety of parameters
of WiFi networks (cf. Section [[IlI-B3)), an overall perspective
of network functioning, which would account for optimization
criteria in several layers simultaneously, has been not conducted
yet. While improved performance can be achieved when
addressing cross-layer designs [96], solutions to posed problems
in this direction are rather difficult to solve by analytical means

due to the variety of related parameters. As yet unexplored,
this constitutes a promising research direction to address by
ML models.
Third, only a few papers provide details on the impact of user
mobility on communication performance [58]], [60]. However,
considering the growing number of connecting mobile devices
to WiFi networks (e.g., phones, tablets, even vehicles), further
insights can be provided to better characterize the influence of
movement on the network performance.
Finally, many reported works remark future directions
concerning the improvement of ML-based solutions to:
o provide accurate ML models (additional loss functions)
(401,

o reduce the coordination overhead between agents in
decentralized solutions [37],

« further integrate ML models into network controllers for
proactive management [76],

o further study the impact of network status parameters on

traffic prediction [52], [[75], [90], and

« increase complexity of ML models to better characterize

network functioning [58]], [61]], [65]], [[70].

IV. RECENT WIFI FEATURES

In a push for higher and more efficient performance levels,
recent WiFi amendments such as 802.11ac [144], 802.11ax
[3], and 802.11be [145]] support new advanced and complex
techniques such as multi-user communications (OFDMA, MU-
MIMO) [146], spectrum aggregation (channel bonding, multi-
link operation) [147], spatial reuse, and multi-AP coordination
[S]. All these techniques promise high-performance gains in
both throughput and latency and pose new challenges regarding
how to use them. These challenges can be solved, or at least
alleviated, using ML methods (Table .

A. Beamforming

Transmissions in the millimeter wave (mmWave) 60 GHz
shared band are a specific WiFi use case aimed at greatly
increasing the transmission rate in line of sight (LoS) commu-
nication scenarios, both short-range (indoor) and long-range
(outdoor), the latter known at fixed wireless access (FWA)
[148]]. To cope with the increased attenuation in this band,
beamforming of transmissions is required. This functionality
was first introduced to WiFi in 802.11ad and later extended in
802.11ay.

A key problem of 802.11ad/ay networks, which can be solved
using ML, is finding the optimum beam sector pairs (i.e., beam
alignment) between transmitter and receiver (Fig. 8). Alignment
is derived from a beam sweeping procedure, which can take up
to tens of milliseconds and needs to be periodically repeated.
To facilitate the beam sector pair selection, Chang et al. [[101]
propose to replace the standard method of exhaustive beam
search with one of three neural network (NN)-based algorithms
proposed to predict the optimal beam sector, including the
use of historical data. This work is then extended in [111]],
where the training duration is reduced through a combination
of SL-based feature extraction and RL-based training beam
selection. Meanwhile, Polese et al. [112]] developed DeepBeam,



Table III
SUMMARY OF WORKS ON IMPROVING THE PERFORMANCE OF RECENT WI-FI FEATURES WITH ML.

Area Ref. ML category ML mechanisms Year Evaluation method
197] Statistical learning 2017 Theoretical
[98]] SL RF 2017 Simulation
[99] NN CNN 2018 Theoretical, experimental
[100] DL DNN 2019 Simulation
[101]) DL DNN 2019 Simulation
[102] SL CNN, Conv. LTSM, RF 2019 Simulation, experimental
Beamforming [103]] RL QL 2020 Simulation
(Section (o4 N/A N/A 2020 Simulation
[105]) DL CNN 2020 Experimental
[106] DL DNN 2020 Simulation
[107] SL RF 2020 Simulation
[108]] SL DT, RF, SVM 2020 Simulation, experimental
[109] DL DRL 2020 Experimental
[110] DL DRL 2021 Simulation
[111] SL, DL CNN, DRL 2021 Simulation, experimental
[112] DL CNN 2021 Experimental
[113] SL SVM 2014 Simulation
[114] RL MAB 2019 Experimental
[115]) RL QL 2019 Experimental
Multi—(uSS:Crt iC(;I{l]ulrglcatiOH [116] DL DNN 2019 Simulation
[117] SL DNN 2020 Experimental
[118] DL DQN 2020 Simulation
[119] DL DQN 2021 Simulation
[120] RL QL 2021 Experimental
[121]) DL DNN 2021 Experimental
[122] RL IState-GPOMDP 2008 Simulation
[123] RL QL 2009 Simulation
[124] RL MAB 2016 Experimental
[125]) RL QL 2017 Simulation
Spatial reuse 126) RL MAB 2019 Simulation
(Section [V-0) 1127) RL MAB 2019 Simulation
[128] RL MAB 2019 Simulation
[1129] SL MLP 2020 Simulation
[130] RL QL 2020 Simulation
[131]) RL MAB 2017 Theoretical, simulation
[132] RL MAB 2019 Simulation
[133]] RL SARSA 2019 Experimental
[134] RL MAB 2019 Theoretical, simulation
Channel bonding [135] DL DQN 2020 Simulation
(Section [IV-D) [136] DL DQN 2020 Simulation
[137] RL MAB 2020 Experimental
[138]] RL MAB 2021 Experimental
[139] SL NN 2021 Simulation
[140] SL GNN 2021 Simulation
[141] SL DNN 2019 Simulation
Multi-band, network MIMO, 42} DL Monte-Carlo/DDPG 2019 Simulation
and full-duplex (Section 143) DL DNN 2020 Simulation
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Figure 8. Example of beam sector alignment in IEEE 802.11ad/ay networks:
8-sector AP and 4-sector client station.

a framework for beam selection which replaces the time-
consuming beam sweeping procedure with inferring the beam
sector to use through convolutional neural network (CNN)-
based deep learning based on passive listening to other
transmissions.

Alternatively, improved ML-based beam alignment predic-
tions can be performed with the use of camera images. Salehi
et al. [105] show that visual information can significantly
reduce the time required to establish the best beam pairs. The
application of camera images was also shown by Nishio et al.
[102], where ML was able to accurately and rapidly predict
received power, which is the necessary information needed to
find beam sectors. Camera-based predictions of link outage
can be made with DRL and lead to improved handovers in
mmWave networks [[109].

Since the range of mmWave bands is short, 802.11ad/ay APs
may need to be densely deployed for certain use cases. Under
such network densification, beam coordination, and interference
management becomes necessary. Mohamed et al. [97]] propose
an architecture to reduce cross-beam interference by applying
statistical learning to construct a radio map of the network
environment, which serves as input for beam selection. In this
scenario, signalling is carried over the WiFi network in the
5 GHz band through a centralized AP controller. Zhou et al.
[[100] propose a DNN-based solution to optimize the beams
in a centrally-managed AP deployment. Their solution is able
to achieve nearly the same performance as an optimization
algorithm at a fraction of the computational time.

A related problem in dense deployment scenarios is the
association between user stations and APs, especially since
next-generation stations will have multi-homing capabilities
(i.e., methods allowing sustained connectivity to multiple APs).
This leads to an interesting user-to-multiple APs association
problem, which can be solved using ML methods. Ly Dinh et al.
[110] consider a generic WLAN where users can autonomously
learn, using their own DQN, which APs to connect to and
using which band (sub-6 GHz or mmWave).

Once appropriate 802.11ad/ay beam sectors have been
found, rate adaptation is required. MCS selection for mmWave
transmissions relies on appropriate channel classification, i.e.,
determining whether a channel is LoS or non-line of sight

(NLoS) This classification can be augmented with ML, as
shown in [98]], where classification is done based on the random
forest technique. Predicting the statistical characteristics of a
channel can also be useful and there are many papers focusing
on the PHY layer (regardless of the wireless technology). For
example, Bai et al. [99] use a trained CNN to predict the
statistical characteristics of a channel for any given (indoor)
location for technologies using massive MIMO.

Alternatively, rate adaptation can be based on typical
metrics available in commercial off-the-shelf (COTS) devices.
Aggarwal et al. [108] predict optimal MCS settings using
three ML models: DT, RF, and SVM. They conclude that
RF provided best results and outperformed SNR-based rate
selection strategies. This approach was then extended in the
learning-based beam and rate adaptation (LiBRA) framework
[107], where the same ML-based classification methods are
used to determine which of the two adaptation methods (rate
selection or beam selection) give better performance for a given
link.

The data rate of mmWave links can be improved by
better channel estimation techniques. Lin et al. [106] combine
transceiver location information with a DNN to evaluate the
channel frequency response. This approach decreases the
number of transmitted pilot signals leaving more room for
user data.

Finally, in terms of channel access, 802.11ad introduces a
new, hybrid MAC with contention-free and contention-based
periods. The definition of the resource scheduler is out of the
standard scope and remains an open research challenge [[104].
Azzino et al. [[103]] propose an RL-based approach to find the
optimal duration of the contention-free period by observing the
time-varying network load. Their scheme is able to preserve
the throughput for the allocated streams, while leaving more
resources for contention-based traffic.

B. Multi-user Communication

With the IEEE 802.11ac amendment, and the support of
downlink MU-MIMO transmissions, Wi-Fi opened the door for
multi-user transmissions, i.e., simultaneously transmitting to
different stations in the same TXOP. Then, both downlink and
uplink MU-MIMO was introduced by IEEE 802.11ax, as well
as orthogonal frequency-division multiple access (OFDMA).
OFDMA divides the available bandwidth into different sub-
channels, called RUs, which are then allocated to other users.
Both MU-MIMO and OFDMA will also play an important role
in future IEEE 802.11be networks. In IEEE 802.11be, beyond
extending Wi-Fi capabilities by using 320 MHz channels and
up to 16 spatial streams, some improvements such as the
allocation of multiple RUs to the same user will be introduced.

The most significant challenge in multi-user communications
is identifying and creating groups of compatible stations that,
when simultaneously scheduled, result in an improvement of
network performance. This is a complex non-linear problem
and so suitable to be tackled using ML techniques due to the
need to choose a particular group of stations and configure
their link parameters with only partial information in a rapidly
changing environment. shows the case where an AP
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Figure 9. The ML agent is in charge of finding groups of compatible stations
and schedule transmissions based on past experience.

empowered with an ML agent is in charge of taking these
scheduling decisions. First, it must learn that station (STA) 1
and STA 3 can belong to the same MU-MIMO group. Then,
given the AP has data to transmit to all three stations, the ML
agent has to decide how to allocate the different available RUs
to the stations. In this example, it has agreed to allocate a
larger RU to STA 1 and STA 3 for a MU-MIMO transmission,
and a smaller one to STA 2.

Several papers address the problems of user selection, link
adaptation, and channel sounding overhead reduction in MU-
MIMO-enabled WLANs using a variety of ML strategies.
Karmakar et al. [114] implement an e-greedy strategy to
find the best configuration (group and link parameters) using
past experience. The authors of [[113]] use an SVM classifier
to develop a robust MCS selection procedure. Reducing the
channel sounding overheads using DNNs to compress CSI
at each STA and decompress CSI at the AP is presented in
[117], showing a significant reduction of the required airtime.
Finally, a different approach is considered in [115]], [120],
where a policy gradient approach is applied to determine if
a certain client will benefit from participating in MU-MIMO
transmissions. In this case, the policy function is represented
using a neural network consisting of two convolutional layers.
In all cases, significant performance results are obtained by
improving the network throughput.

Regarding OFDMA, in case of AP-initiated transmissions,
the AP must determine the group of stations scheduled at
each TXOP, and which is the best RU allocation to them.
Alternatively, in the case of uplink transmissions, stations may
be allowed to select the RU which they will use for transmission.
These problems are considered in [[116], [[L18]], [119] using
DRL techniques. In [118]], [119], the authors focus on the
uplink case, and propose a decentralized RU selection method
using DRL (i.e., a CNN based DQN) that provides much higher
gains when compared against the case when RUs are selected
randomly (as proposed in IEEE 802.11ax). An opposite case,
i.e., only AP-initiated downlink transmissions, is considered in
[116] where DRL-based scheduling is implemented. It takes
into account per-station channel quality and traffic information
as inputs and different objective policies. Results confirm the
potential of the use of ML for scheduling in OFDMA systems.

It is important to remember that OFDMA-based channel
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Figure 10. An AP empowered with ML is able to learn from experience which
are the best SR configuration to maximize its own, or the overall network,
performance.

access is a common feature for Wi-Fi and 5G, which was
adopted by WLANSs after it was successfully applied in the
cellular domain. In the following papers ML is used to
the address the several problems in OFDMA-based cellular
networks: fair scheduling [[149], [150], carrier frequency offset
(CFO) estimation for uplink transmissions [[151]], [[152]], inter-
network interference control [[153]], and resource allocation
[[154]]. They implement RL [[149], [[150], [153]], supervised deep
learning [151]], unsupervised deep learning [[152], and a genetic
learning algorithm [[154]] to support performance optimization.
We believe that these papers may provide interesting insights
and guidelines for researchers working in the Wi-Fi domain.

Finally, in [121] joint MU-MIMO and OFDMA optimization
is addressed using DL. The proposed solution, called DeepMux,
is executed at the APs and relies on DNNs to minimize the
impact of channel sounding and find a near-optimal resource
allocation policy. Experimental results show gains of up to
50% in throughput using DeepMux.

C. Spatial Reuse

The IEEE 802.11ax amendment first introduced spatial reuse
(SR) to Wi-Fi networks. The main goal behind this mechanism
is to allow concurrent transmissions between devices that
belong to different basic service sets (BSSs). When a device
detects an ongoing transmission, it must first decide whether
another concurrent transmission is possible, and in case it
is, which transmission power to use to avoid disrupting the
ongoing one [8]]. The IEEE 802.11ax SR solution offers good
performance gains, despite its conservative design. Therefore,
the use of ML techniques to make such a mechanism adaptive
to the current scenario and help decide when and how a device
detecting an ongoing transmission can benefit from a spatial
reuse opportunity should result in even higher gains.

[Fig. 10| shows the case of two neighbouring APs that,
empowered by ML agents, can find a suitable configuration for
both of them (i.e., the configuration that gives them the highest
possible throughput) to share spectrum resources. In this case,
we assume both prefer to use the same 80 MHz channel but
are transmitting at low power. In this case, they maximize



mutual spatial reuse opportunities in front of other options
such as the use of non-overlapping channels (less bandwidth)
or transmitting at high power (higher MCSs) but causing the
other BSS to defer.

The use of ML solutions to tackle the SR problem has raised
some attention in recent years. Most of the works implement
RL techniques for learning the best configuration for each
ML agent-empowered AP on-line. Q-learning is used in [[123],
[130], and MABs are used in [[124]-[[128]. All these papers
share the concept of multiple agents that either do not share
information or only share partial information (i.e., the action
performed and the obtained reward) and learn by interacting
through the environment. As shown in the referred papers, in
multi-agent scenarios where the agents compete with each other
without collaborating, convergence may be hard or impossible
to achieve. There are also papers using SL techniques, such
as NNs [129], [[155], to help with the selection of proper SR
parameters (transmission power and sensitivity levels) given
the characteristics of the scenario are known.

In the following, we overview some of these papers, as they
are illustrative to understand how ML can be used to improve
SR operation in WiFi. Timmers et al. [123]] use a Q-learning
algorithm to optimize power, transmission rate, and clear
channel assessment (CCA). States are defined as a combination
of transmission power, interference, and the MCS used, and
actions consist of changing the transmission power and MCS.
Agents are placed at every device and act selfishly. Q-learning
is also used in [130] to improve the 802.11ax’s spatial reuse
mechanism. In this case, the considered Q-learning solution
aims to learn the best decision (i.e., transmit concurrently or
wait) given the agent knows the current interferers. Interestingly,
the authors also consider non-stationary scenarios and tackle
that situation by increasing the learning rate of the less-chosen
actions, which results in a rapid adaptation to the environmental
changes.

Using [125]] as a starting point, where a stateless Q-
learning solution is introduced, in [[127], different MABs action-
selection strategies are considered (e-greedy, EXP3 [156], upper
confidence bound (UCB) [[157]], and TS [158]]) to deal with
channel selection and transmission power allocation. Two
strategies to take actions are also examined: 1) concurrent — all
networks take actions simultaneously, and 2) sequential — only
one network changes its configuration at a time. Results show
that optimal proportional fairness can be achieved even if the
different networks operate selfishly (i.e., they aim to maximize
their throughput) without sharing information. Concerning the
different MAB techniques, the use of sequential action taking
between actors reduces the throughput variability at the different
BSSs. However, this comes at the expense of lower throughput
values. More details regarding the use of MABs for improving
decentralized SR decisions are provided in [126]] where it is
considered that the different ML agents can communicate and
share the performance obtained when playing a certain action.
In this case, it is possible to apply utility functions in the online
optimization process that directly target network fairness, such
as max-min, effectively reducing those cases where some BSSs
are starved due to the selfish operation of the others.

Supervised learning techniques such as MLP and DTs are

considered in [[129] to help the selection of SR parameters at
both the AP and stations. The models are trained offline using
a dataset that covers multiple scenarios and configurations. A
different approach is considered in [[155]], where a central
controller able to configure the entire Wi-Fi network is
considered. A NN is then used to propose configurations to all
BSSs so spatial reuse is maximized. The NN takes into account
the correlation function between the throughput achieved by
the different devices in the network and their associated link
layer parameters.

Lastly, a completely different approach to achieve SR is taken
in [[124] by considering the use of directional transmissions. In
this paper, the selection of the antenna orientation is tackled
as a non-stationary MAB problem. The authors implement
the system using software-defined radio (SDR) wireless open
access research platforms (WARPs) showing its correct oper-
ation, as well as that their solution is resilient to co-channel
interference.

D. Channel Bonding

The option to enable channels wider than 20 MHz was
introduced in IEEE 802.11n, where up to 40 MHz channels
were supported. The IEEE 802.11ac and IEEE 802.11ax
amendments further increased the maximum channel width to
80 and 160 MHz, respectively. Increasing the channel width will
continue with IEEE 802.11be, where up to 320 MHz channels
will be allowed. Using wider channels allows for higher
transmission rates and therefore higher performance. However,
in dense scenarios, it may notably increase contention between
neighbouring BSSs, which may cause the opposite result.
Therefore, correctly deciding when to use a wider channel and
what should be its size is necessary for successfully improving
WLAN performance. Unfortunately, there is no single answer
to the previous question. It depends on each specific scenario,
including the number and position of contending devices, the
load of each BSS, and the available channels.

ML techniques can help solve such a situation by learning
the best channel allocation and bonding configurations in a
given scenario. Online learning seems a natural option in this
case, especially if RL techniques and prediction models are
combined to foster a rapid convergence [132]]. For example,
shows the case where an agent learns from experience
which actions to perform given that the environment is found
in a particular state (i.e., the state may be defined by the
occupancy of the different 20 MHz channels) every time the
primary channel becomes idle. In this case, the agent has learnt
that the best action when all four 20 MHz channels are idle
is to transmit in the first 40 MHz primary channel, but not in
the secondary 40 MHz channel. Similarly, when the secondary
40 MHz channel is busy, the AP has learnt the best action is
to wait until the 40 MHz secondary channel becomes idle to
perform a 80 MHz transmission.

Out of the box MABs are mainly used to decide which
are the best channel widths to be used when no further
information, neither from the network nor from the user
requirements, is considered, and the goal is to maximize WLAN
performance [133]], [[134], [138]]. Then, when traffic loads
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Figure 11. An ML-enabled AP that aims to learn which is the best set of
actions that maximize its own performance. The primary channel is identified
as P. Grey rectangles illustrate idle channels, red — busy channels, green — AP
transmissions.

are also a parameter to be taken into account, as well as
other performance metrics such as delay and throughput, DRL
techniques are considered [135]], [[136]]. Lastly, SL techniques
are also used to predict future states [[137]], [139] and so be
able to react in advance in case when predicted values are
below the expectations.

Karmakar et al. [133] show that the default dynamic
channel bonding operation can be improved by considering
the individual needs of each station, as well as the access
category (AC) they are using, selecting the most appropriate
channel widths to use. With that goal in mind, a MAB
algorithm, UCB, is used to learn when the use of secondary
channels is required. Testbed results show that the proposed
solution can provide gains higher than 100% in some cases.
Similarly, in [134]), the authors aim to learn from a trial and
error perspective (i.e., exploring) which are the best channels
and bonding strategies to use, including both contiguous and
non-contiguous 20 MHz channels. The proposed mechanism,
called iterative trial and error (ITE), includes different states
depending on both the actions taken and the reward obtained.
Exploration is implemented in ITE using an e-greedy strategy.
The proposed mechanism is implemented in WARP nodes.
Results show the ITE mechanism outperforms the default e-
greedy mechanism, and improves the performance of static
bandwidth channel access (SBCA) and dynamic bandwidth
channel access (DBCA) thanks to its availability to select the
channel width properly. Lastly, in [[131] hybrid adaptive DBCA
(HA-DBCA) is introduced to solve the starvation problem
that affects some DBCA devices. HA-DBCA introduces a
polling-based adaptive mechanism for contention-free access
and uses UCB to identify the stations that are starving, and
so allow them to transmit their data during the contention-free
access. The channel bonding problem is also modelled as a
MAB in [138]. However, in this work, the authors rely on
chaotically oscillating waveforms generated by semiconductor
lasers to guide exploring the different available actions. Then,
dynamically adapting the different thresholds used to select
one or another action based on the amplitude of the generated
waveform at sampling instants shows that such a technique
can outperform default MABs such as UCB and e-greedy in
terms of throughput.

DRL is considered in [135]], [[136]. In [135]], the channel
allocation problem (i.e., group of selected channels and position
of the primary channel) in a scenario with multiple BSSs is
addressed. The paper shows that the channel allocated to each
BSS should depend on its expected load and performance.
Then, considering the goal of minimizing latency, a on-demand
channel bonding (DCB) algorithm is proposed that usesDRL
along with a multi-agent deep deterministic policy gradient
(MADDPG) for training to find suitable channel allocations.
Results show that by reducing the channel width in APs
with low traffic demands, the delay in the overall network
is improved as the channel access contention is reduced. A
similar problem is considered in [136], where DRL is used
to tackle the channel assignment problem in WLANs with
channel bonding. A key aspect of this paper is that the authors
consider spatio-temporal changes in traffic demands. Therefore,
the DRL solution (i.e., a DQN) has to learn how to adapt to
them to offer satisfactory service. To do that, the agent in each
AP learns from historical traffic loads when more or fewer
channels should be bonded together, trying to minimize the
interactions with other BSSs when not required.

The problem of throughput prediction in dense WLANS
supporting channel bonding is considered in [139], where
several predictors are built using SL techniques that include
ANNS, graph neural networkss (GNNs), RF regression, and
gradient boosting. Both training and validation are performed
on an open dataset generated using the IEEE 802.11ax-oriented
Komondor network simulator [[159]. While the accuracy
achieved by the proposed methods demonstrates the suitability
of ML for predicting the throughput performance of complex
WLANS, more importantly, this work can be easily extended
by considering other approaches. The same dataset is used in
[140] to predict Wi-Fi performance using a GNNs model that
incorporates the deployment’s topology information. Finally,
the problem of collisions with hidden nodes when channel
bonding is used is described in [137]], which, as indicated,
may cause a reduction in throughput up to 60%. Therefore, a
solution to avoid channels with hidden interference issues by
predicting its activity in advance is proposed. To do that, APs
use a recursive neural network, namely a Metropolis-Hastings
generative adversarial network (MH-GAN) technique, that can
predict the activity of the neighbouring BSSs. Results confirm
that the presented solution, called Smart Bond, can reduce
the probability of suffering transmission errors due to hidden
nodes, as could be expected.

E. Multi-band, Network MIMO, and Full-duplex

ML techniques are also applied to improve the operation
of a wide variety of advanced mechanisms that include multi-
band WLAN operation [141]], multi-AP coordination [[142]],
and in-band full-duplex [143]]. In these papers, we find that
both RL and SL techniques are used. For example, DRL is
used in [142] to jointly perform channel allocation and AP
clustering to maximize the performance of Distributed MIMO
transmissions. Similarly, NNs are used in [[141] to predict future
channel states and so improve the performance of multi-band
WLAN:S, and in [143] to find groups of stations that enable
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Figure 12. An ML-enabled multi-band AP that aims to determine the best
traffic balancing policy based on predicting future channel occupancy values.
In the figure, @ represents the fraction of the traffic directed to the 5 GHz
interface.

full-duplex communication at the APs. In the following, we
overview them in more detail.

Fig. 12| shows the case where an ML-enabled multi-band AP
has to decide how to distribute the traffic (to a given station)
between the 5 GHz and 6 GHz bands. To do that, the agent
aims to predict future channel occupancy values at both bands
to decide how to use the two interfaces better. For instance,
if the occupancy predicted at the 5 GHz band is high, it may
choose to turn off such an interface, and use only the one
working at the 6 GHz band, thus saving some energy.

How to improve the operation of a multi-band WLAN, i.e., a
WLAN equipped with multiple interfaces operating at different
bands, is considered in [[141]. The description of how their
proposal works fits well with the multi-link operation currently
under development in the IEEE 802.11be task group and with
the synchronous mechanism in particular. In such a scheme,
when any of the active backoff instances reach zero, the other
interfaces’ state is checked, and those idle are bonded together
to support the subsequent transmission. However, in many
cases, the different interfaces will be busy at that moment.
Suppose some of them will become idle soon. In that case,
it may be more efficient to wait until that happens and then
aggregate these links instead of immediately transmitting using
only a single interface. The authors solve this uncertainty by
learning and predicting when a given interface will become idle
using a probabilistic neural network (PNN), and so supporting
the decision of waiting or not.

In [[142], the authors consider the joint problem of channel
allocation and AP clustering in distributed MU-MIMO for Wi-
Fi networks. DRL is considered to solve these two problems
aiming to maximize user throughput performance. As pointed
out by the authors, both issues are NP-hard, and therefore,
only heuristic solutions exist in the literature. The proposed
DRL framework consists of an agent, implemented using a
DNN, and a distributed MIMO Wi-Fi simulator. Although not
explicitly specified, their solution is implemented in a central
controller. Results show that using the DRL framework, a
20% improvement in user throughput performance is achieved.
Also, it is shown that the DRL framework can attain multi-
ple objectives, such as maximizing throughput and fairness
simultaneously.

Finally, full-duplex (in-band) communication allows a device

to transmit and receive simultaneously, thus ‘doubling’ the
channel capacity. In WLANSs, a key challenge to solve is the
user pairing problem: finding groups of different stations that
allow the AP to transmit to one while receiving from another. To
solve this combinatorial problem, which becomes impractical
when the number of stations is high, in [143]] a DL approach
is considered through a ‘pointer network’. The main benefit of
this solution is that the NN does not need to be re-trained when
the length of input (e.g., the number of users) changes within
an expected range. The authors compare their solution with
two other low-complexity methods called greedy assignment
and random assignment algorithms, showing how the DL-based
solution outperforms them.

F. Open Challenges

This section has covered recent and advanced WiFi features
such as beamforming, multi-user communications, channel
bonding, spatial reuse, and multi-band. Although quite different,
in all of them ML techniques are used mainly either (1) to adapt
to the environment through selecting the most proper actions at
the right moment, (2) for system-level performance predictions,
or (3) to improve the operation of specific mechanisms by
completing unavailable data.

Since most of these features are recent, complex, and
in development, many aspects are still not considered or
considered only superficially. Therefore, there is room for
future work in this area either by addressing the problems
listed in previous subsections with different ML techniques
or by simply picking some of the still uncovered aspects. In
the following, we detail some open aspects in the different
categories.

First, the success of using beamforming in indoor WiFi
scenarios will be based on the ability to properly perform beam
sector alignment (Fig. 8). Research has shown that ML methods
can have a positive impact, but robust solutions available for
COTS devices are required, e.g., to minimize latency [148].
For outdoor scenarios, beamforming-aware resource allocation
(intra-AP) and resource coordination (inter-AP) methods based
on ML need to be updated to the recently released 802.11ay
amendment, where FWA is an important use case, which has
so far not been researched in depth.

In the area of multi-user communication, more works
focusing on the use of ML solutions for allocating spatial
streams and RUs to active stations are required, especially
when mixed with realistic traffic patterns and QoS requirements.
Developing techniques that can plan several resource scheduling
rounds in advance is required. By considering future traffic
estimates, contending devices, and environmental conditions,
may help improve the WiFi response to sensitive traffic,
improving criteria such as worse-case latency by pre-reserving
resources. Moreover, future predictions using ML techniques
can improve how channel sounding is implemented, as only
stations that will likely be scheduled, will be requested to
provide such information.

Many works in the area of spatial reuse have considered
BSSs operating in a completely decentralized way, so using
a spatial reuse opportunity depends only on each individual’s



observed inputs. This situation justifies that many papers have
considered the use of ML techniques such as MABs or Q-
learning to infer which is the best action in a particular situation.
However, with IEEE 802.11be, TXOP sharing and cooperative
schemes may be enforced, thus requiring a different approach,
and so the use of new and different ML techniques, to optimize
its operation.

The case of channel bonding has been addressed using RL,
SL, and DL techniques. All these ML techniques have been
able to capture the interactions between BSSs that appear when
channel widths change dynamically. Further work is required to
test and compare these results with other techniques. However,
a more exciting aspect is to couple channel aggregation
techniques with OFDMA RU allocation, for which complex
DL techniques may be well suited.

Finally, a disruptive new feature introduced by IEEE
802.11be is multi-link operation. This will open several exciting
challenges, such as which channels to use and how to distribute
the different flows between links. ML techniques can also
be applied to learn, for example, when is the best moment
to perform a channel switch, which link occupancy patterns
favour more or less a particular traffic pattern, and how to
allocate or distribute flows to links.

V. WIFI MANAGEMENT

WiFi management (including channel and band selection, AP
selection and association, management architectures, protection
of the health of WiFi connections) are important and complex
tasks. Table[[V] presents a summary of works augmenting Wi-Fi
with ML in this area, which we present next.

A. Channel and Band Selection

Channel allocation is an important problem in dense WiFi
networks, where a limited set of available channels has to
be shared by a large number of co-located WiFi BSSs. Poor
channel allocation causes substantial contention among the
APs and stations, hence reduces the throughput of each node.
Typically, in the proposed solutions, the research goal is to
try to assign channels in a way that the APs using the same
channel do not interfere with each other (e.g., they are out
of each others’ interference range) and/or avoid allocating the
same channel for highly loaded BSSs (i.e., load balancing).
Note that in the of variable traffic load, channel allocation has
to be performed periodically.

As depicted in ML-based algorithms can help in
solving this problem, as they provide models that may consider
changing interference relations (e.g., due to node mobility)
and variable traffic loads (e.g., as a result of nodes becoming
active/passive).

Nakashima et al. [161] addressed the channel allocation
problem in multi-BSS WLANSs by assuming the existence of
a central controller that is aware of the global system state,
and able to control all APs. To solve the problem of finding
a channel allocation that reduces inter-AP overlapping and
maximizes the throughput of each BSS, a DRL approach is
applied to learn satisfactory channel configurations. First, the
interactions between APs, under a certain channel allocation,
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Figure 13. An ML-based network controller determines channel allocation,
station association, and handovers. Dashed arrows represent observations, solid
lines represent actions.

is represented by means of contention graphs (i.e., channel
adjacency matrices). To extract the features of carrier sensing
relationships, the authors use graph convolutional networkss
(GCNs). Then, a DDQN is considered as a DRL method, with
e-greedy and spatial adaptive play (SAP) policies to train the
neural network. DDQN aims to maximize the throughput of
the APs with lowest throughput. The proposed method shows
that in a 10 BSS WLAN, the use of a solution which combines
DDQN and GCN outperforms random channel allocation.

Jeunen et al. [[160] introduce a framework able to passively
monitor dense WiFi environments, compute overlapping airtime
periods, and detect so-called bad networks (i.e., networks that
are the main cause of performance degradation in a WLAN).
A centralized (SDN-based) network architecture is assumed.
To implement the framework, the authors resort to different
ML techniques (e.g., least absolute shrinkage and selection
operator (LASSO) regression and ordinary least squares (OLS))
as well as other algorithms to extract and rank relevant features
from the gathered data, e.g., label propagation algorithm (LPA),
Girvan-Newman algorithm (GNA). Results show the presented
framework is able to find a new channel allocation that solves
the interference problems.

Another DRL-based channel allocation scheme for densely
deployed WLANs was proposed in [[161]. The learning algo-
rithm is based on DDQN employing a dueling network and
prioritized experience replay. Further, two additional features
are introduced to improve performance. First, the authors
adopt graph convolutional layers in the model to extract
essential features of the carrier sensing relationships among
the APs (i.e., topology information). Second, they propose
selective observation data buffering to prevent over-fitting
by reducing the duplication of the sampling data specific to
WLAN channel allocation problems. Specifically, they filter
experiences to reduce the duplication of data for learning, which
can often adversely influence the generalization performance.
The simulation results demonstrate that the proposed method
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Table IV
SUMMARY OF WORKS ON IMPROVING WIFI MANAGEMENT WITH ML.

Area Ref. ML category ML mechanisms Year Evaluation method
Channel and band selection [160] SL LASSO, OLS 2018 Experimental
(Section [V-A) 161] RL GCN 2020 Simulation
[162] SL MFNN 2010 Experimental
[163] SL RF 2011 Experimental
164 RL DRL, DQL 2021 Simulation
[165] SL RF 2017 Simulation
[166]| SL LR, DT 2017 Experimental
, o 1167] SL NN 2018 Simulation
AP Sele(csfg’c‘:ijgocm“’“ [168] RL MAB 2019 Simulation
[169] RL QL 2019 Simulation
[170] DL DRL 2019 Simulation
[171] SL LSTM 2019 Experimental
[1172] RL MAB 2020 Simulation
[173] RL MAB 2020 Simulation
Management architectures [1174] DL DQL 2019 Simulation
(Section [V-C) [175] SL RF 2019 Experimental
[176] SL DT 2018 Simulation, experimental
Predicting the health of Wi-Fi connections (177 SL, USL DT, RFE, SVM, kNN 2019 Experimental
(Section [V-D) [178]) SL kNN, NB 2020 Experimental
[1179] USL SOHMMM 2021 Simulation

enables the allocation of channels in densely deployed WLANs
such that the system throughput increases.

B. AP Selection and Association

The proliferation and densification of WiFi networks often
leads to the existence of multiple spatially overlapping WiFi
cells. Hence, a station has to choose which of the discovered
APs to connect with. The simple association method envisioned
in the WiFi standard makes the stations select the AP that
provides the strongest signal. Unfortunately, in many cases,
this simple approach leads to under-utilization of some APs
while overcrowding others. Consequently, AP selection and load
balancing approaches have been extensively studied as a way
to improve network throughput. For example, a decentralized
AP selection procedure was presented in [168]], [[173]], where
stations employ an MAB-based approach to dynamically
learn the optimal mapping between APs and stations, and
hence distribute the stations among the available APs evenly.
Specifically, each station independently explores the different
APs inside its coverage range, and selects the one that better
satisfies its needs. To this end, the authors propose a novel
opportunistic e-greedy approach with stickiness that halts the
exploration when a suitable AP is found, then, the station
remains associated to that same AP while it is satisfied, only
resuming the exploration after several unsatisfactory association
periods. The authors show that their approach allows increasing
the number of satisfied stations and the aggregated network
throughput by up to 80% in the case of dense AP deployments
(e.g., 16 co-located APs).

Similarly, Lépez-Raventds and Bellalta [[172] study MAB-
based solutions for the decentralized channel allocation and AP
selection problems in enterprise WLAN scenarios. To this end,

they empower APs and stations with agents that, by means of
implementing a Thompson sampling algorithm, explore and
learn which is the best channel to use, and which is the best AP
to associate with, respectively. Using a custom built simulator,
called NekoE] the authors show that the proposed learning-based
approach outperforms the static one, regardless of the network
density and traffic requirements. Moreover, it was shown that
the proposed approach can achieve better performance than
static strategies with less APs for the same number of stations.

Bojovic et al. [[163]] proposed a cognitive AP selection
scheme, where a station selects an AP that is expected
to yield the best throughput according to past experienced
performance. The scheme belongs to the family of supervised
learning techniques and uses an multi-layer feed-forward neural
network (MFNN) to learn the correlation between the observed
environmental condition (e.g., SNR, probability of failure,
beacon delay) and the obtained performance (i.e., throughput).
The authors performed an experimental performance evaluation
in an 802.11 testbed and showed that the proposed approach
effectively outperforms legacy AP selection strategies in a
variety of scenarios. A similar approach of predicting future
performance for the sake of AP selection is followed also
in [162]], [180].

An interesting scheme of user-to-multiple AP association
was presented in [[164]. The authors proposed two distributed
association methods based on Deep Q-Learning (DQL), where
a station learns its best set of APs to be connected i) solely
using local knowledge of the wireless environment and ii)
with limited feedback from AP. Note that each device is
equipped with multiple wireless interfaces. The objective is to
maximize the long-term sum-rate subject to multiple constraints

Zhttps://github.com/wn-upf/Neko



(i.e., AP load or application QoS constraints). The numerical
evaluation revealed that the proposed algorithms improve
targeted objectives and enhance fairness among applications.

A centralized approach was proposed by Kafi et al. [[169].
Specifically, they proposed an RL-based client-AP association
algorithm to enhance the aggregated throughput in dense WiFi
networks and hence satisfaction of users. The Q-learning-
based algorithm is deployed centrally in an SDN-controller
and controls the actual associations of new users as well as
performs re-associations of connected stations. As the authors
demonstrated through simulations, their approach outperforms
the standard 802.11 association procedure when the distribution
of users is not uniform and performs similarly when it is
uniform.

Pei et al. [[165] performed large scale measurements trying
to find out which factors affect the WiFi connection set-up
process. Specifically, the authors analyzed 0.4 billion WiFi
sessions collected using the WiFi Manager mobile app from
5 million mobile devices. Their results show that 45% of WiFi
connection attempts fail and about 5% of attempts consume
more than 10 seconds. Based on the analysis, they developed an
ML-based AP selection algorithm that significantly improves
WiFi connection set-up performance. The algorithm is based
on RF and classifies candidate APs into slow or fast sets by
taking the following features as an input: hour of the day,
received signal strength indicator (RSSI), mobile device model,
AP model, encryption enabled. Based on the classification, a
station avoids connecting to those AP classified into the slow
set. The evaluation results show that the described approach can
reduce connection failure to 3.6% and improves the connection
set-up time over 10 times.

As shown by Song and Striegel [[160], frame aggregation
can offer a compact and efficient representation of expected
throughput for improving AP selection. Specifically, they
demonstrated that the characteristics of sub-frames during frame
aggregation can uniquely embody the utilization, interference,
and backlog traffic pressure for an AP. Then, using an SL
approach, they built simple regression models (based on linear
regression and DT regression) to predict the AP expected
throughput for better access point selection. According to the
presented results, the prediction accuracy is above 80%.

In mobile scenarios, it frequently happens that a station
leaves the coverage area with good connectivity of one AP and
enters an area covered by another AP. In such a case, the station
has to perform a handover from the old AP towards the new
AP. A decision about a potential handover operation should
be made early enough to avoid low data rate periods or even
connectivity outage. ML methods help predict future network
conditions, and hence to make correct handover decisions. For
example, Feltrin and Tomasin [167] employ ML to predict
upcoming handover by making an AP monitor the RSSI of
connected stations and use a neural network for specific pattern
recognition in the RSSI evolution. The technique provides good
prediction accuracy and is resilient to noise, speed, and fading
phenomena.

ABRAHAM (mAchine learning Backed multi-metRic Han-
dover AlgorithM) [171] is an ML-based proactive handover
algorithm that uses multiple metrics to predict the future
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location of stations, the future predicted AP load, and, using
LSTM, predicts future RSSI values. These predictions are used
to optimize the load on the APs by handing over stations to
APs to preserve QoS and QoE metrics. The authors use an
long short-term memory (LSTM) neural network (a variation
of the RNN) as they learn and recognize temporal patterns
(e.g., evolution of RSSI). ABRAHAM achieves 139% higher
overall throughput compared to the legacy 802.11 handover
algorithm.

Han et al. [170] describe a handover management scheme for
dense WLAN networks, which is based on DRL, specifically
deep Q-network. It enables the NN to learn from user behavior
and network status, adapting its learning in time-varying dense
WLANSs. The handoff decision is modeled as an Markov
decision process (MDP) leveraging the temporal correlation
property, while the proposed scheme depends on real-time
network statistics to make decisions. Using simulation analysis,
the authors show that their solution can effectively improve
the data rate during the handover process and outperform the
traditional 802.11 handover scheme.

C. Management Architectures

Bast et al. [[174] used DRL to dynamically optimize network
slice configuration in WiFi networks. A slice configuration con-
sists of multiple parameters, e.g., CCA sensitivity level, MCS,
and transmit power. Therefore, the action search space grows
with the number of active slices in the network. Interestingly,
in the proposed approach a selected action does not consist of
absolute configuration values, but increasing or decreasing the
current parameters. The authors start with a simple DQN agent
and further enhance it with DDQN, experience replay, as well
as fitted Q-learning to improve convergence speed and stability.
Using the ns-3 network simulator, they show that the proposed
solution can achieve the same optimal performance found as
with an exhaustive search. Finally, DDQN can optimize at
run-time, without the need for AP deployment information or
knowledge about coexisting networks.

aiOS [62] is an Al-based operating system for SD-WLANs
(i.e., the control plane). It embeds state-of-the-art ML toolboxes
to provide a global intelligence platform, which is at the
same time driven by Al and designed to drive future Al-
powered applications and services. The authors presented
a proof-of-concept implementation of aiOS and validated
it by implementing several low-complexity ML models for
adaptive frame length selection in 802.11-based SD-WLANS.
The proposed approaches improve the aggregated network
throughput by up to 55% as evaluated with a real-world testbed.

Lyu et al. [175] collected large-scale AP usage data in a
university campus WiFi system, which contains over 8000 APs
and serves more than 40,000 active users. The data collection
was performed over a period of more than two months. With
the collected data, the authors conducted extensive spatio-
temporal analytics on the data set including AP load (i.e., the
number of associated users) and AP traffic throughput (i.e.,
the amount of traffic consumption within a time period). The
authors observed a so-called idle phenomenon that prevails
throughout the whole trace. Specifically, a large portion of APs



remain unused, without any user association regardless of day
or night. Second, the AP load follows a long tail distribution
(i.e., most APs serve only a few users, while a small number
of APs serve hundreds of users), hence, the AP utilizations are
imbalanced. The authors propose a new management system,
named LAM (large-scale AP management), where the unused
APs are switched-off intelligently according to the underlying
user association conditions. LAM leverages a machine-learning
algorithm to predict the AP load over time based on historical
AP association records. Using diverse algorithms (including RF,
SVM, kNN, and DT), the authors show that the load prediction
accuracy can reach as high as 90%. In addition, more than 70%
of power energy can be markedly saved, with over 92% of
WiFi coverage guaranteed. These savings translate to $59,000
per year in their university WiFi system.

An SDN-based WiFi control system is considered to manage
a group of APs in [[181]. The central controller is able to
configure channels and transmission power for the APs in
the network. Decisions on how to configure the network are
taken after learning from the collected data. A set of ML-based
techniques are used, for example, reduced error pruning trees
(REPTs) — to make predictions of future WiFi and non-WiFi
activity (such as microwave ovens) so better configurations
can be deployed. The use of the framework reduces channel
congestion by up to 47%.

D. Predicting the Health of WiFi Connections

The unlicensed bands are becoming crowded with dense and
uncontrolled deployments of WiFi networks, generally managed
by different users. These environments have exacerbated
the effects of well-known pathological conditions such as
hidden terminals, flow starvation, and performance anomaly.
Unfortunately, these problems become increasingly difficult
to detect in a real complex scenarios. Specifically, while
performance degradation is a common symptom of these
pathological conditions, they have different causes and would
require different solutions. ML seems to be a right toolset to be
applied towards the detection of individual impairments, as it
can handle a large amount of raw measurement data and learn
to deduce the current operation regime (e.g., using classification
methods). Therefore, Gallo and Garlisi [176] provide an
automatic diagnostic tool, Wi-Dia, for detecting causes of
performance impairments by recognizing the wireless operating
context. Wi-Dia follows a data-driven approach and exploits
machine learning methods for classifying WiFi pathological
conditions (e.g., hidden nodes and flow starvation). It uses
features related to network topology and measures channel
utilization without impacting regular network operations. The
classifier was jointly trained using simulated and experimental
data. Specifically, the authors took the advantage of the
flexibility of network simulators as well as the realistic details
of wireless testbeds. As results show, Wi-Dia achieves high
detection accuracy of pathological WiFi conditions in real-
world scenarios.

Similarly, Syrigos et al. [I77] try to detect the causes
of WiFi under-performance (e.g., high contention with other
WiFi and non-WiFi devices, operation in low SNR region,
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hidden terminal, or capture effect). To this end, they deploy a
centralized WiFi network controller which collects performance
metrics from connected APs (i.e., those exposed by the ath9k
driver). The authors select two metrics: normalized channel
access (NCA), i.e., the ratio between channel access attempts
per second and the maximal channel access attempts per
second as calculated with analytical 802.11 models); and
frame delivery ratio (FDR), i.e., the ratio between successful
transmissions per second and channel access attempts per
second. The classification is preceded by data modeling and
feature extraction and performed with four diverse algorithms:
DT, RF, SVM, and kNN. After fine-tuning the algorithms’
parameters, the authors manage to achieve a remarkable
detection accuracy of 99.2% with the kNN algorithm.

Trivedi et al. [178]] propose WiNetSense, a centralized sens-
ing framework, which collects the WiFi link quality statistics
(e.g., RSSI) from network devices and use this information to
build the global network topology and instantaneous network
health information. Furthermore, the collected data is analyzed
using ML algorithms such as kNN and naive Bayes (NB).
Specifically, the authors try to predict the health of wireless
links and show that this knowledge can be used to trigger
specific decisions regarding load balancing, smooth handovers,
or dynamic power control.

An anomaly detection approach that uses self-organizing
hidden Markov model map (SOHMMM) is considered in [179].
The self-organizing map is an artificial neural network that is
trained through a USL process. The authors report, SOHMMM
shows improved anomaly detection accuracy and sensitivity,
compared to other HMM-based approaches, as tested in a
simulated environment.

Morshedi and Noll [|182] propose a novel ML-based approach
for estimating the perceived QoS of video streaming using only
802.11-specific network performance parameters collected from
AP. The study produced datasets comprising 802.11n/ac/ax
specific network performance parameters in the form of mean
opinion scores. Then, the datasets were used to train multiple
ML algorithms and achieved a 93-99% accuracy estimating
the perceived QoS classes. The authors selected the logistic
model tree (LMT) as the most suitable algorithm to estimate
the perceived QoS of video streaming in terms of accuracy,
interpretability and computational cost criteria. Note that the
generated ML model can be transferred to the WiFi AP as a
lightweight script to continuously monitor the such QoS.

E. Open Challenges

While most of the presented ML-based solutions for cross-
network optimization (e.g., channel allocation) feature cen-
tralized operation, we believe that distributed approaches are
better suited for the unplanned and chaotic nature of WiFi
deployments. Moreover, we cannot assume the existence of a
centralized controller that manages co-located but separately
owned WiFi networks (e.g., in typical residential WiFi deploy-
ments). Note that the potential operation of such a central
controller might pose a significant privacy threat, as it might
require the collection of sensitive user data (e.g., the traffic
volume of individual stations). Therefore, we argue that there



is an increasing need for research in the scope of a distributed
ML-based optimization scheme. Particularly, multi-agent RL-
based schemes seem to be a fit, where a set of agents (e.g., one
at each AP) interact and share limited information with each
other to collaboratively optimize the use of wireless resources
while also preserving privacy.

VI. COEXISTENCE SCENARIOS

A number of research papers address the problem of the
coexistence of multiple radio access technologiess (RATS) in
unlicensed bands by proposing ML-based solutions (Table [V)).
Both centralized and decentralized approaches are considered,
together with both offline and online training. The proposed
mechanisms appear in the following main areas:

o fair channel sharing,
« network monitoring,
« signal classification, and
« cooperative networking.

In most cases, the proposed mechanisms are based on reinforce-
ment learning (mostly Q-learning) and deep learning (mostly
CNNs). Often, e-greedy policy is used for Q-learning since it
allows a balance between exploration and exploitation.

The coexistence of WiFi and cellular technologies is currently
a popular and attractive research areaEl These technologies
are already advanced and their newest generations provide
peak data rates in the order of Gbit/s. However, under
coexistence scenarios in unlicensed bands (e.g., LTE-LAA),
they still rely on rather primitive coexistence schemes based on
energy-sensing and hence suffer from frequent collisions and
significant throughput degradation of up to 90% [227], [228].
This is because these technologies are heterogeneous: they
implement different MAC and PHY, they are usually managed
by separate operators, and they do not natively support inter-
technology communication for spectrum sharing. Therefore, fair
sharing of unlicensed radio resources is a challenge [33]]. Most
papers propose to optimize LTE behaviour (i.e., the newcomer
to the unlicensed bands) so that WiFi performance is not
degraded [229]. In some cases, however, it is proposed that
both technologies implement some sort of ML to improve their
coexistence. [Fig. 14] presents different approaches considered
by researchers: from a central controller implemented for both
technologies up to separate ML agents installed in LTE base
stations (BSs) and WiFi APs, which independently observe the
environment (i.e., perform local observation) and take actions.
Note that the state of the environment depends on the joint
action of all agents, which may not be aware of individual
decisions. Additionally, in the reviewed papers, typically only
downlink LTE transmissions are considered to interfere with
either uplink or downlink WiFi transmissions, while LTE uplink
traffic is considered to be scheduled in the licensed band.

3Channel sharing with other technologies is described in Sectionwhere,
among others, we address sensor and vehicular networks. Additionally, we
refer the readers to [223]], in which different learning paradigms for IoT
communication and computing technologies are surveyed, and to [226], in
which ML-supported detection and identification of IoT devices is surveyed.
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Figure 14. Types of ML implementations in LTE/WiFi coexistence scenarios.
Dashed arrows represent observation, solid lines represent actions, and blue
rectangles represent interference domains.

A. Fair Channel Sharing with Cellular Networks

Several papers propose to adjust LTE-unlicensed (LTE-U)
behaviour, by either a central controller or by distributed
learning. Their main goal is to intelligently avoid interference
with incumbent technologies, like WiFi, as a solution to the
problem of the negative impact of periodic LTE transmissions
on channel utilization efficiency and channel access fairness
(230].

Most of the papers implement Q-learning and propose
modifications to the duty cycle management (DCM), being a
part of the carrier sense adaptive transmission (CSAT) algorithm
(cf. [Fig. T3)), or to the almost blank sub-frame (ABS) allocation
mechanism (193], [231]], which is traditionally used to avoid
co-channel cross-tier interference in case of heterogeneous
cellular scenarios, e.g., in scenarios composed of macro and
small cells (Fig. [T6). The main goal is to improve coexistence
and channel sharing efficiency by intelligently disabling LTE
transmissions in certain sub-frames to allow WiFi transmissions
and outperform the legacy DCM.

Centralized LTE-U/WiFi channel access management is
proposed in the following papers. In [205], the traffic load
of each system is modeled as an M/M/1 queue and Q-learning
is used by a central controller to adjust the allocation of
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Table V
SUMMARY OF WORKS ON IMPROVING WIRELESS NETWORK COEXISTENCE WITH ML. PAPERS INDICATED WITH AN ASTERISK (*) IMPLEMENT WI-FI
AGENTS; OTHER PAPERS DEPLOY AGENTS ONLY ON THE COMPETING TECHNOLOGY SIDE.

Area Ref. ML category ML mechanisms Year Evaluation method
[183] RL QL 2015 Simulation
[|184]* RL QL 2016 Simulation
[185] AL. Markov game 2017 Simulation
(1186 RL QL 2017 Simulation
[187] RL QL 2018 Simulation
[188]] RL QL 2018 Simulation
[[189] RL QL 2018 Simulation
[190] RL QL 2018 Simulation
(191 RL LSTM 2018 Simulation
[192] RL QL 2018 Simulation
Fair channel sharing (193] DL DRL, QL 2019 Simulation
with cellular networks [194] RL QL 2019 Simulation
(Section [195]* RL QL 2019 Simulation
[196]* RL QL 2020 Simulation
[197]* RL MAB 2020 Simulation
[198] DL DRL, MDP, DQN 2020 Simulation
[199] RL QL 2020 Simulation
[200] RL QL 2020 Simulation
[201]] RL QL 2020 Simulation
[202] DL DRL, TRPO 2020 Simulation
[203))* RL clustering-based MAB 2021 Simulation
[204] RL QL 2021 Simulation
[205]* RL QL 2021 Simulation
[206] RL QL, double QL 2016 Simulation
[207]] RL QL 2017 Simulation
[208]] RL QL 2017 Simulation
[209] RL fuzzy QL 2018 Simulation
Network monitoring [210)* SL DNN, CNN, LSTM 2019 Simulation, experimental
(Section [VI-B) [211] DL CNN, NNMR 2020 Experimental
[212] SL RF 2021 Simulation
[213] DL CNN, TL 2021 Simulation, experimental
[214] USL NN 2021 Simulation
[215] USL K-means clustering 2017 Experimental
[216] USL, SL NN, DCNN 2020 Simulation
Signal classification [217] DL CNN/RNN 2020 Simulation
(Section [VI-C) o . ) )
[218] SL NN, logistic regression 2020 Simulation
[219] DL CNN 2020 Simulation
[220] DL CNN 2021 Simulation
[221] RL TRPO 2020 Simulation
Cooperative coexistence  [222] RL TRPO 2020 Simulation
(Section (223] RL NN, backpropagation 2020 Simulation
[224] RL NN with fuzzy logic 2020 Simulation

LTE sub-frames in the CSAT duty cycles. In [[195], an inter-
RAT controller implementing Q-learning is proposed, which
mandates dynamic frame selection (DFS) to improve WiFi/LTE-
U coexistence fairness by considering the WiFi load. In
particular, it selects the optimum sub-frame configurations out
of the ones defined by 3GPP. Additionally, it is used to reduce
LTE-U sub-frame transmission power to limit interference to
co-channel users and increase the overall channel utilization.
Similar approaches are used elsewhere: in [198]], where an
agent controls DCM to maximize the LTE-U throughput while

protecting WiFi transmissions, based on observing WiFi traffic
demands and using DRL; in [199], where a centralized RL-
based DCM learns from measured interference; and in [[186],
where a centralized Q-learning-based mechanism of blank sub-
frame allocations is proposed to improve the overall utility
function (i.e., considering target WiFi throughput as well as
satisfactory LTE throughput and delay).

Decentralized channel access management for LTE-U/WiFi
coexistence is proposed in the following papers. In [183], Q-
learning is used for distributed control of duty cycle periods



CSAT duty-cycle mechanism augmented with ML
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Figure 15. LTE-U CSAT coexistence mechanism. Blue rectangles represent
LTE-U sub-frames of a length of 1 ms and green rectangles represent LTE-U
OFF periods, during which WiFi transmissions can occur.
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Figure 16. LTE-U ABS coexistence mechanism. Blue rectangles represent
LTE-U sub-frames of a length of 1 ms and green rectangles represent ABSs,
during which WiFi transmissions can occur.

by LTE-U BSs, which considers the beaconing mechanism of
802.11n. Additionally, in [I189] a Q-learning based listen before
talk (LBT) is proposed for LTE-U downlink transmissions
which may interfere with WiFi trafﬁcﬂ In this work, LTE-U
devices are treated as secondary users that need to protect
WiFi transmissions. The authors propose rewarding LTE-U
users for which defer periods increase in case of increasing
WiFi backoff timers (i.e., when WiFi defer periods increase).
They perform simulations to show improved throughput and
decreased delay of WiFi nodes in comparison to legacy LBT.
WiFi system protection is also considered in [187]]. The authors
introduce a virtual coalition formation game (VCFG) and define
the optimization problem within each virtual coalition which
is composed of WiFi APs and LTE-U small base stations
(SBSs) operating in the same unlicensed band. Then, (i) Kalai-
Smorodinsky bargaining is used for fair time-sharing between
LTE-U and WiFi and (ii) Q-learning is used for resource
allocation for LTE-U. It is proposed that each SBS maximizes
the sum of QoE for its users under the constraint of protecting
WiFi APs. QoE is measured in terms of the mean opinion score
(MOS) which is mapped to the transmission characteristics of
the following applications: web browsing, file downloading,
and video streaming. The authors show that this approach
provides higher throughput for WiFi than standard LBT.

Lin and Yu [185] implement AL to improve coexistence
fairness for LTE-U BSs. Bianchi’s Markov model [233] is
embedded in a sequential game to describe the contention nature
of WiFi networks. Additionally, the time-slotted behaviour of
LTE-U nodes is also modeled as a sequential game. These two

4LBT is commonly used in case of LTE-LAA, however, it was proposed in
the literature also for LTE-U [232].
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Figure 17. LTE-LAA LBT-based coexistence mechanism. RS denotes the
reservation signal, which is typically used by the LTE-LAA nodes to reserve
the channel until the beginning of the next frame synchronization slot.

processes are combined to form a Markov game. Each LTE-U
BS serves as an agent and WiFi networks are considered the
environment to which the agents adapt. Furthermore, Q-learning
based multi-channel operation is proposed in [[192]], in which
LTE-U SBSs serve as agents to allow either independent or joint
optimization of duty cycles for each channel. It is shown that the
proposed mechanism ensures fairness and improves throughput
for multi-channel WiFi/LTE-U coexistence. Finally, in [234]]
LTE-U and WiFi are managed by separate SDN controllers
which build decision trees. Per-technology controllers do not
communicate with each other but only negotiate network
sharing by playing a repeated game based on rank-order
tournaments. The authors propose to use an incentive-based
approach to negotiate the channel resources, i.e., there are prizes
for allowing spectrum sharing and for asking the other operator
for a favor. The simulation results show that it is possible to
achieve harmonized coexistence of the two technologies.

Another group of papers address LTE-Licensed Assisted
Access (LTE-LAA)/WiFi coexistence, which in most cases
involves the adjustment of parameters of the LBT-based channel
access mechanism shown in Fig. Similarly to the LTE-U
case, most papers are based on Q-learning.

We have found a single paper that proposes centralized
channel access management for LTE-LAA/WiFi coexistence
[194], in which Q-learning is used by mobile management
entitiess (MMEs) implemented in the LTE core to adjust
the LTE-LAA transmission duration to WiFi traffic intensity.
Centralized collection of data regarding LTE-LAA and WiFi
systems by the LTE cloud wireless access network (C-RAN) is
proposed to support MMESs. Other papers implement distributed
Q-learning to: (i) optimize spectral efficiency of WiFi/LTE-
LAA coexistence [[196], (ii) scale CW parameters depending
on the collision probability observed in each backoff stage
by LTE user entitys (UEs), as opposed to the legacy hybrid
automatic repeat request (HARQ) mechanism implemented in
cellular networks [200], (iii) select optimal TXOP and muting
periods (i.e., giving opportunities for WiFi transmissions) which
outperform random and round-robin mechanisms [190], (iv)
adjust the TXOP duration of coexisting WiFi and LTE-LAA
systems based on buffered downlink data in APs and evolved
Node Bs (eNBs) [184], and (v) select optimal channel and
subframe numbers [204]]. In [[184], both WiFi and LTE-LAA
nodes serve as agents, which take actions (select TXOPs from
4, 6, 8 and 10 ms) and calculate rewards based on the target
occupancy ratio.

A different approach is considered in [197], where a MAB is



used to improve LTE-LAA/WiFi coexistence fairness, under the
assumption of both cooperative and non-cooperative networks.
In both cases, the CW sizes are optimized for the two networks
by using an online training technique and either throughput or
the information on LTE’s ON period of the other network as
rewards. Furthermore, in [[188]], two-level distributed learning
is used. At the master level, Q-learning is used to determine the
optimal LTE transmission time in the unlicensed bands using
either WiFi or LTE-LAA. At the slave level, stochastic learning
is used for LTE-LAA channel access with the protection of
WiFi traffic. Meanwhile Challita et al. [191]] propose a new
type of deep learning to improve LTE-LAA coexistence with
other LTE-LAA/WiFi networks. The authors combine a non-
cooperative game with RL supported by the LSTM concept. It
is used for modeling the self allocation of resources by LTE-
LAA SBSs. In particular, dynamic channel selection, carrier
aggregation, and fractional spectrum access are considered for
SBSs. It is assumed that exponential backoff is used for WiFi
and non-exponential backoff is used for LTE-LAA (i.e., in
each epoch a static CW is assumed, adopted from one epoch
to another). It is shown that this approach not only improves
performance in terms of LTE rate but also in terms of reducing
disturbances in WiFi’s performance and achieving coexistence
fairness with WiFi networks and other LTE-LAA operators.
Finally, in [204], Q-learning is used for joint channel/sub-frame
selection. In this work, only LTE-LAA BSs perform learning
with zero knowledge of concurrent WiFi systems.

We expect that WiFi/New Radio-Unlicensed (NR-U) coexis-
tence will gain a growing interest of the research community
in the nearest future [33]], [35]], [235]], [236]]. One of the first
ML-based works is [201], where Q-learning is used to adjust
the timing of NR-U’s ABSs to WiFi’s data transmissions to
achieve higher throughput and better channel utilization in
comparison to static ABSs allocation. In particular, an NR-U
BS serves as an agent which listens to WiFi network parameters
and learns the data transmission rules of WiFi stations. Another
interesting work is reported by Hirzallah and Krunz [203]], who
propose a clustering-based MAB real-time algorithm that runs
on NR-U/WiFi nodes to adapt sensing thresholds depending on
network dynamics. The authors show that sensing threshold-
adaptive devices employing ML do not harm neighboring legacy
devices (with fixed sensing thresholds) and that both WiFi and
NR-U throughput can be improved in comparison to standard
and random sensing threshold settings.

For a more a more generic coexistence setting, Yu et al.
[202] address a DARPA challenge on ‘“autonomous radios to
manage the wireless spectrum.” They propose a modification of
DON to adapt to wireless network behaviour. The authors show
that by centralized learning (at the gateway) and distributed
execution (at the nodes) it is possible to provide fairness in
channel access, when coexisting with other network types (like
WiFi).

B. Network Monitoring

Efficient network monitoring is a feature which can greatly
support inter-technology coexistence by predicting the number
of contending nodes/technologies, which then can serve as a
guidance for RAT behaviour adjustment.
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Yang et al. [210]] propose centralized monitoring. An offline
DNN-based learning from real samples is used to predict the
number of competing WiFi and IoT devices in a given area.
Using the inference results, the gateway (which is connected
with an IEEE 802.11 AP using an Ethernet link and with IoT
IEEE 802.14.5 nodes using wireless links) predicts the number
of transmitting devices for each technology using a dedicated
three-way handshake-based rendezvous phase on a primary
channel. After that, it mandates the optimal WiFi and [oT
parameters to minimize inter-technology interference, e.g., the
CW for WiFi nodes, the length of the contention access phase
for the IoT nodes, the assignment of the secondary channels
for both technologies. Additionally, Ahmed et al. [212] install
a cognitive monitoring module in each eNB to optimize LTE
operation in unlicensed bands. The monitoring module is aware
of the number of coexisting eNBs and APs. It uses a RF-
based classifier to identify the environment state and select an
appropriate scheduling and resource allocation scheme which
optimizes LTE throughput without deteriorating the perfor-
mance of WiFi networks. Similarly, Galanopoulos et al. [206]]
use centralized Q-learning and double Q-learning to improve
the unlicensed spectrum utilization for carrier aggregation of
LTE-Advanced (LTE-A), while providing fair coexistence with
WiFi nodes. eNBs learn the channel occupation time by WiFi
users and select least occupied channels. This procedure is
further optimized with double Q-learning, in which LTE-A
transmission power is additionally adjusted to lower the impact
of LTE-A transmissions on with WiFi users.

Distributed network monitoring is proposed in [214], where
the unsupervised NN-based estimation of the number of
coexisting WiFi nodes is implemented in NR-U nodes. The
learning process builds upon the detected transmission collision
probability in the unlicensed channel. It is shown that this solu-
tion outperforms the often used Kalman filter-based solutions.
Furthermore, Yang et al. [209]] use fuzzy Q-learning to either
centrally (central unit in C-RAN) or distributively (each eNB)
learn the WiFi performance to improve the scheduling decisions
on the LTE-LAA side.

There are also papers which take advantage of a dedicated
interface between WiFi and LTE. In [207]], [208]], each LTE
user obtains information from the 802.11k amendment on the
load of the coexisting APs. Then, supported by Q-learning,
LTE offloading decisions are made. This is interesting from
the WiFi perspective, since overloaded APs are not selected
by this mechanism, and therefore WiFi networks performance
is not worsened by the offloading decisions.

C. Signal Classification

Machine learning is also used for signal classification and
recognition without the need for implementing a dedicated
interface between technologies or knowing the per-technology
operation patterns. Wu et al. [31]] survey wireless modulation
recognition and wireless technology recognition supported by
DL techniques.

Yang et al. [219]] use CNNs to classify LTE-U and WiFi
signals and in [220]] they are used by LTE eNBs to classify
WiFi conditions (saturation, non-saturation) without the need



of decoding WiFi frames, based on inter-frame space (IFS)
histograms. Furthermore, in [213]], CNNs are used to classify
LTE and WiFi signals using an SDR-based RAT classifier.
Interestingly, the authors used a well-known object detection
you only look once (YOLO) model use transfer learning
and speed up the training process of their classifier. The
only change required was the adaption of the last (Softmax)
layer to appropriately classify LTE and WiFi signals. The
developed solution provides 96% accuracy of RAT recognition.
Gu et al. [217] use 80,000 LTE-U/WiFi signal samples to
train CNN and RNN to recognize LTE-U/WiFi signals. The
RNN-based approach appeared unsatisfactory, while the CNN-
based approach provided satisfactory results. Additionally,
in [218], a NN with linear regression is used to track key
performance indicators (KPIs) and estimate the probability of
LTE-LAA/WiFi coexistence, without using knowledge of the
MAC/PHY protocols and parameters of the two technologies.
Furthermore, Sathya et al. [216] use ML to distinguish between
the presence of one or two WiFi APs interfering with an LTE-U
BS, based on detected energy levels during the OFF periods of
the DCM instead of decoding WiFi frames. Finally, Pulkkinen
et al. [211]] analyze deep learning-based interference detection.
The authors formulate, among other, the following practical
recommendations to be used in future ML-based interference
detection schemes: (i) deep learning-based approaches require
similar levels of noise in testing and training data sets or
a large number of samples with different noise levels from
different environments, (ii) training should include multi-label
classification. WiPlus [215]] uses ML (i.e., k-means clustering)
on the WiFi side to detect the LTE-U interference by using the
spectral scan capabilities of COTS WiFi hardware. This allows
WiFi to quantify the effective available channel airtime of each
WiFi link (downlink/uplink) at runtime. Moreover, the obtained
timing information about LTE-U’s ON and OFF phases allow
WiFi to schedule its transmissions only during the OFF phases
to avoid collisions with LTE-U.

D. Cooperative Coexistence

Inter-network coexistence can also take on a cooperative
form. A prominent example are WiFi-LiFi networks, where
the light fidelity (LiFi) component is responsible for data
transmission using light waves (the THz band). Visible light
communication (VLC) has many advantages such as high
bandwidth, license-free operation, and electromagnetic safety.
However, it has a short range and is vulnerable to link outage
caused by obstructions. Therefore, it is often paired with WiFi
in the form of a hybrid network.

Wau et al. [237] provide a recent survey of research on this
topic. They mention one ML-based solution related to load-
balancing, done by Ahmad et al. [221]], [222]], where RL is
used to provide centralized AP selection, to avoid servicing
users by overloaded APs. In another work, Alenezi and Hamdi
[238]] consider the optimization of a hybrid WiFi-VLC network
with centralized control and Q-learning to improve network
throughput. In [223]], an NN-based approach is used to select
WiFi-LiFi APs to avoid frequent handovers. The handover
decision is made based on channel quality, resource availability

28

and user mobility, e.g., WiFi-only APs are preferred for mobile
users while WiFi-LiFi APs are selected for static users based on
received signal strength and user satisfaction levels. Finally, in
[224], fuzzy logic is combined with NN to support WiFi-LiFi
handovers.

E. Open Challenges

We have identified several open challenges in the area of
network coexistence. The performance of the proposed ML-
based mechanisms is mostly verified by simulations. Therefore,
real testbed validation can be considered as an important open
challenge since it would validate the ML-based operation
with real radio signals. This will help identify crucial factors
which have not been implemented yet (or are impossible to be
included) in the simulators and may have been overlooked
by researchers. Additionally, only a few papers consider
adjusting the behaviour of both WiFi and LTE nodes. In most
cases only the LTE operation was supported by ML while
the WiFi operation was left unchanged. With the opening
of the new 6 GHz unlicensed spectrum band, which paves
the way to redefine channel access rules defined for other
unlicensed bands [147], [239], [240]], we believe that changes
in the operation of both technologies could be considered
in the future. Furthermore, only several papers concentrate
on the new features introduced by NR-U and none of them
addresses the configuration possibilities introduced by the
newest 802.11 amendments (like 802.11ax). We believe that,
e.g., the coexistence of NR-U with 802.11 OFDMA/MU-MIMO
channel access gives novel options to be considered by future
ML-based mechanisms. Finally, following [33]], [241], we
strongly agree that high attention should be paid to the security
of inter-technology operation, e.g., in case of augmenting
coexisting networks with federated learning.

VII. MULTIHOP WI-F1 NETWORKS

The primary design goal for IEEE 802.11 networks is to be
a single-hop access network. However, it can also be used in a
variety of multihop settings (e.g., ad hoc, mesh, sensor, vehicu-
lar) either using the mainline standard (802.11a/b/g/n/ac/ax) or
a dedicated amendment (such as 802.11ah for IoT). Research
papers dealing with multihop settings often either do not specify
the underlying technology, assume a generic CR technology,
assume heterogeneous networks (e.g., 802.11 and LTE), or
use an alternative technology (which could theoretically be
replaced by WiFi). One of the reasons for this is that the key
multihop problem (routing) is beyond the scope of 802.11.
Therefore, in the following, we provide only a brief overview
of how ML can be applied in such settings with an emphasis
on pointing the reader towards relevant surveys and tutorials.
Indeed, an overview of using ML in multihop wireless settings
could be a topic for a whole, separate survey.

A. Ad Hoc Networks

The research popularity of (generic) ad hoc networks and
MANETSs reached its peak over a dozen years ago. They
have mostly been replaced by their more application-oriented



variants (mesh, sensor, vehicular, etc.) which we will discuss
further onﬂ An overview of applying ML techniques to ad hoc
networks can be found in a 2007 paper by Forster [29]]. The
state of the art reported in this paper is obviously outdated, but
the list of applicable ML techniques (RL, swarm intelligence,
mobile agents, etc.) and use cases (mainly improving routing)
remains current. Al-Rawi et al. [243]] provide an overview
of applying RL to improve routing in distributed wireless
networks. For more WiFi-related examples, we refer readers to
[244]-[246] for applying Q-learning to the optimized link state
routing (OLSR) routing protocol and to [247]] for applying RL
to 802.11-based delay tolerant networks (DTNs).

ML can also be used to optimize ad hoc network config-
uration [248]], but this example is for a cognitive radio ad
hoc network (CRAHN) (i.e., without 802.11). Another active
area of research for MANETS is mobility prediction [249],
but again the ML-based solutions do not explicitly consider
WiFi [250], [251]. Similarly, research on applying Q-learning
to interference cancellation in ad hoc networks also does not
consider WiFi [252].

B. Mesh Networks

Karunaratne and Gacanin [253]] provide a recent tutorial
on ML approaches in WMNs. Important problems which can
be solved with ML include: routing, channel assignment, and
network deployment. The authors map ML techniques (such
as SVM, k-means clustering, and Q-learning) to the identified
WMN problems and point out future research directions
(including the potential of DL).

An example of using Q-learning to help clients perform
channel selection (or rather, AP selection) in an IEEE 802.11
mesh network can be found in [254]]. Decisions are based on
estimated collision probability and received signal strength.
The authors show that the learning approach can outperform
a best signal strength heuristic, especially under non-uniform
node distribution.

Another example is training a NN to predict link bandwidth
in an 802.11 mesh network [255]]. As inputs the authors propose
using the averages of important PHY and MAC metrics: SNR,
transmission time, MCS, and re-transmission rate. The approach
is able to accurately predict link bandwidth, which can then
be used as a routing metric.

Link quality prediction is also the topic of a paper by Bote-
Lorenzo et al. [256]. Based on an extensive dataset from
an existing 802.11-based community WMN, they evaluated
four ML algorithms for regression (online perception, on-line
regression trees with options, fast incremental model trees with
drift detection, and adaptive model rules). Only the first of
these was able to outperform a simple baseline and only under
certain circumstances. This lead to the design of a hybrid
algorithm, which supports the thesis that applying ML is not
a straightforward approach.

For heterogeneous (WiFi and LTE) mesh networks, the rout-
ing protocol can be enhanced by Q-learning for RAT selection

5Ad hoc networks consisting of unmanned aerial vehicles (UAVs) are a
dedicated use case, for which RL-based solutions are also being developed
[242].
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[257]. In this approach, each node performs observations as
follows: LTE link quality is based on network load (measured
through buffer occupancy), WiFi link quality — according to
the current PHY transmission rate. Through appropriate RAT
selection, nodes can observe up to 200% throughput increase
compared to the single-technology case.

Finally, we comment on the dedicated 802.11s amendment
for mesh networks. Among its features, it introduced MAC-
layer routing called path selection in the form of the hybrid
wireless mesh protocol (HWMP). However, our literature
review did not identify any papers directly related to applying
ML for improving the performance of either HWMP or
other 802.11s functionalities. A paper on network topology
inference uses external sensors and an ML approach to infer the
topology of a simulated 802.11s network, but no specific mesh
functionalities are considered [258]]. The lack of dedicated
802.11s research is most likely the result of the limited
deployment of 802.11s by the industry.

C. Sensor Networks

Applying ML to sensor networks (i.e., the communication
part of IoT) is an active research topic. Some relevant
surveys in this area include [25]], [259]-[263]]. Among the
most important network performance research problems for
sensor networks, which can be solved with ML methods,
are: sensor grouping (clustering, data aggregation), energy-
efficient operation (scheduling, duty cycling), resource alloca-
tion (cell/channel selection, channel access), traffic classifica-
tion, routing, mobility prediction, power allocation, interference
management, and resource discovery [261]]. However, WiFi
is only one of many IoT-enabling technologies and 802.11-
related solutions are rarely mentioned in these surveys with
the only directly performance-related work being classifying
802.11 interference using a deep convolutional neural network
(DCNN) [264], [265]], SVM [266], or various types of SL
classifiers: classification trees (CTs) and SVM [267]].

There are two 802.11 amendments related to IoT: 802.11af
and 802.11ah. The former is a CR-based approach to use WiFi
in TV white space spectrum. It has not enjoyed commercial
success and there are also few research papers related to
improving 802.11af performance with ML. A singular example
is the work by Xu et al. [268]], [269] on 802.11af rate adaptation
schemes, which use DL models, although their work is in the
context of vehicular networks.

Meanwhile, the 802.11ah amendment has had more commer-
cial success (as HaLow) and has received more attention from
the research community. However, while 802.11ah permits tree-
based multihop communication, it is a predominantly single-
hop technology. This is reflected in a recent survey on 802.11ah
research [270] where, out of about 200 cited references, only
three consider multi-hop scenarios. Also, surprisingly, only two
papers by Tian et al. [271]], [272] deal with applying ML: both
use a form of supervised learning to optimize the parameters
of 802.11ah’s grouping functionality, restricted access window
(RAW). A similar problem is also addressed in [273]], where
an MLP NN configures these parameters considering, i.a.,
network size and the MCS values used. Other applications of



ML to 802.11ah include: improving coexistence with 802.15.4g
devices, a type of low-rate wireless personal area network (LR-
WPAN), by avoiding interference with their transmissions using
a Q-learning-based backoff mechanism [274]], grouping sensors
based on their traffic demands and channel conditions using a
regression-based model [275], grouping sensors based on their
data rates by classifying them with NNs [276]], and improving
carrier frequency offset estimation using various types of DNNs
[277].

Finally, research is also being done for generic WiFi
(mainline amendments). Zhao et al. [278|] propose a deep
Q-learning (DQL)-based method of optimizing CW for energy-
constrained IoT networks. Chen et al. [279] also optimize CW
but using a deep NN for IoT networks using 802.11ax. Shin
et al. [280]] provide a method for RAT selection, between WiFi
and narrow-band IoT (NB-IoT), using RL to optimize for per-
node latency. This has been further extended for mobile sensor
networks incorporating UAVs. Li et al. [281] and Kurunathan
et al. [282] presented a learning-based approach using DQN
and DDPG, respectively, for trajectory planning.

D. Vehicular Networks

There has been much research in the area of applying
ML to vehicular networks, with WiFi being only one of the
many considered wireless access technologies. Some recent
surveys and tutorials include [283]-[289]]. They point to the
application of ML in vehicular networks in the following areas
of performance improvement: channel estimation, traffic flow
prediction, location prediction-based scheduling and routing,
network congestion control, load balancing and handovers, and
resource management. Other, non-performance areas where
ML can be applied include vehicle trajectory prediction (for
ensuring road safety), network security, and in-car infotainment
[290].

From the WiFi perspective, 802.11p is the amendment
dedicated to vehicular networks and is included in larger
vehicle-to-everything (V2X) frameworks such as dedicated
short-range communications (DSRC) and the ETSI ITS-G5
standard [291]]. A review of ML-based resource allocation
approaches in DSRC networks can be found in [287]. Examples
of using ML for improving 802.11p performance include: using
DRL for per-link band and transmission power allocation
[292], RL for tuning the CW size [293]-[295]], Q-learning
for improving handoff decisions [296], improving transmission
control protocol (TCP) performance with federated learning
[297]], DNNs for channel estimation [298]], and using RL for
selecting the data transmission rate in a high-mobility scenario
[286], [299].

An emerging future research direction is applying ML to
802.11bd, the successor to 802.11p scheduled for release
in 2022 [300]. Beam alignment is one important problem
of mmWave bands (cf. Section . However, contrary to
WLAN scenarios, the knowledge of a vehicle’s position can
be used to support beam sector selection [301]], where learning
to rank (LTR), also referred to as machine-learned ranking
(MLR), can rank antenna pointing directions. Extending the
input information from just the location of the receiver to the
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location of surrounding vehicles, called situational awareness,
can improve performance of ML-based algorithms. Beam
alignment can be determined using classifiers [302], [303]]
or regression models [304f], [305]. The authors note that
throughput can be satisfactory even if the best beam pair is
not selected, providing an accuracy-overhead trade-off.

E. Relay Networks

The typical single-hop 802.11 deployment scenario can be
extended to a two-hop case with cooperative communications,
where stations are allowed to relay the transmissions of others
[306]. Such functionality requires appropriate coordination
between the AP and stations, which can be enhanced by
designing a mechanism to support concurrent transmissions
from different devices in a WLAN setting [307]. Since the AP
may not have full information of the whole network, the authors
model the problem as a partially observable Markov decision
process (POMDP), and use an RL algorithm that is able to
find which senders can transmit simultaneously. Results show
that low-rate links, usually corresponding to distant stations,
significantly improve their throughput. Despite this singular
example, the relay network concept, for WLANS, has received
limited interest from ML researchers. If relay networks become
an important feature of future WiFi networks, solutions can
be borrowed from 5G networks such as the ML-based relay
selection of [308|.

F. Open Challenges

While a multitude of ML-related open research challenges
can be listed for multihop networks in general, much fewer
can be named if we restrict our focus to WiFi-based multihop
networks. This is on account of WiFi being predominantly used
in single-hop deployments, as mentioned in the introduction to
this section. Even the latest amendments dedicated to sensor
(802.11ah) and vehicular (802.11bd) networks mainly operate
in single-hop.

One particular area where WiFi can be used for wireless
multihop transmissions is providing FWA over mmWave links
(cf. Section [TV-A). This is an important use case for 802.11ay,
where coverage can be extended with a mesh-like distribu-
tion network [148]]. Research is required in developing new
(or adopting existing) ML-based solutions to this particular
scenario in the areas of resource allocation and resource
coordination. An example solution is provided by Lahsen-
Cherif et al. [309] — they develop a QL-based routing protocol
which optimizes energy usage and throughput in a backhaul
WMN scenario with directional links, but without explicitely
stating whether WiFi is used as the wireless technology.

Another area with open challenges is relay selection for
vehicular networks. The authors of [310] suggest a cross-
layer approach combining routing with the 802.11 stack. ML
could be used to more accurately assess per-link routing cost.
Alternatively, auxiliary sources of information could be used to
support vehicular relay selection. A first example comes from
Morocho-Cayamcela et a. [311]], where an ML algorithm was
trained to select relays based on satellite imagery. Using such
imagery and other types of auxiliary information, combined



with the power of ML, can potentially improve vehicular
network performance.

VIII. AVAILABLE TOOLS AND DATASETS

The reviews of research papers in the previous sections
confirm that ML-based control solutions often overtake tradi-
tionally designed ones in terms of performance and efficiency.
However, to reach such high performance levels, long training
is required. For example, an RL agent needs many interactions
with an environment to learn the best policies, while in SL,
the tuning of an ML model requires access to large labelled
datasets. In this section, we describe the available research
tools and datasets that were used in the reviewed papers and
are available for other researchers in the field.

A. Tool Chains

From our keyword analysis of more than 200 papers combin-
ing ML with WiFi, regarding the evaluation methodology, we
found that most researchers run network simulations (= 80%)
to validate their solutions. Only around a quarter of them
performed analytical investigations or experiments in real
testbeds. The lack of real-life experiments is understandable as
they are often complex, risky, and expensive to execute. From
those using simulations, most often the ns-3 network simulatoﬂ
known from traditional networking research, was used with a
share of 10%. Meanwhile, experimental studies were mostly
based on SDR platforms like Ettus USRPSE] whereas COTS
WiFi hardware, mostly with Atheros and Intel chipsets, was
rarely used. The most commonly used ML libraries were
Tensorflow (10%) and Keras (5%).

Based on the results of our analysis it becomes evident that
the seamless support of network simulators (like ns-3) and
SDR platforms for research of ML-based solutions for WiFi
is of great importance. We have observed the first research
frameworks which aim to simplify the integration of ML and
WiFi. The general role of network simulators for bridging the
gap between ML and communications systems like WiFi is
discussed by Wilhelmi et al. [312]]. Specifically, the authors
present possible workflows for ML in networking and how to
use existing tools. Among these is ns3-gym [82] — a software
framework enabling the design of RL-driven solutions for
communication networks. It is based on the OpenAl Gym
toolkitﬂ and provides an extension to the ns-3 network simulator.
With ns3-gym it is possible to use any simulated communication
network (e.g., mixed WiFi and LTE) as a Gym environment so
that RL agents can control the behavior of network protocols.
OpenAl Gym has also been integrated with Veins [313], a
popular open source vehicular networking simulator based on
OMNeT++. The resulting VeinsGym [314] supports the use
of ML both at the protocol as well as at the application level.
Recently, Yin et al. [315] proposed ns3-ai, which offers the
same functionality as ns3-gym bu butter performance by using
shared memory for interprocess communication when running
both the simulation and the Gym agent locally. GrGym [316]

Shttps://www.nsnam.org
Thttps://www.ettus.com
8https://gym.openai.com
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is similar but it builds on the GNU Radioﬂ signal processing
platform, which allows integrating any GNU Radio program as
an environment in the Gym framework by exposing its state and
control parameters for the agent’s learning purposes. In contrast
to ns3-gym, GrGym allows the WiFi network to be a real
testbed consisting of SDR nodes performing real transmissions
over the air. This enables studying the performance of an ML-
based solution under real channel and interference conditions.
The downside is the higher effort required to setup a network
as well as the lack of reproducibility. Finally, Komondor [159]
is another network simulator which already supports a subset of
the 802.11ax standard. It was designed for simulating complex
environments in next-generation WiFi networks with direct
ML support. The authors identify several use-cases and present
ML-based solutions.

B. Datasets

The existence of open-source and standardized datasets is
essential for training and comparing ML-based algorithms.
Moreover, the existence of such datasets accelerates develop-
ment and fosters reproducible research. For example, the recent
advances in image classification and recognition were enabled
by the emergence of such large labelled image datasets (e.g.,
ImageNet [317]).

We have found that researchers usually rely on their own
datasets. Specifically, in 49 papers, they created labelled
datasets by running experiments in testbeds and/or simulators,
while only in 6 articles they used publicly available datasets.
Moreover, while being a good practice, releasing the created
dataset along with the published paper is still not the case for
most of the publications (i.e., only 6 datasets were released).
Here, we describe datasets available online that the community
can immediately use for further ML-based Wi-Fi performance
optimization.

CRAWDAHET] is a repository with a vast set of WiFi
measurements. The datasets include traces from smartphones
performing WiFi scans, multipath TCP traces collected from
a WiFi campus network, as well as traces collected for other
wireless technologies like Bluetooth and ZigBee. Challita et al.
[[191]] used a subset of the CRAWDAD dataset which included
records (e.g., information about the amount of transfered data,
error rates, signal strength) collected by polling WiFi APs every
5 minutes in a corporate research center over several weeks.
Similarly, a dataset called sigcomm2008 contains traces of
wireless network measurement collected during the SIGCOMM
2008 conference.

IEEE DataPorlE] is another large repository of datasets cre-
ated to encourage reproducible research. Within this repository,
Karmakar et al. [56] made available the IEEE 802.11ac perfor-
mance dataselE] that contains information regarding normalized
throughput achieved under five link configuration parameters
(i.e., channel bandwidth, MCS, guard interval, MIMO and
frame aggregation) and the channel quality measured as SNR.

9https://www.gnuradio.org
Ohttp://www.crawdad.org
https://ieee-dataport.org/
12https://ieee-dataport.org/documents/ieee- 8021 L ac- performance- dataset
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Kaggle{?]is an online platform for data scientists and machine
learning practitioners. It allows users to find and publish
datasets. Moreover, it is frequently used by companies to
organize competitions to solve data science challenges. At
the time of writing, the Kaggle platform offers only a limited
number of WiFi-related datasets, e.g., the WiFi Study[]zf] dataset
contains a study of the quality of the WiFi and user perceptions
of WiFi conducted by students in a dormitory.

Next, we briefly describe the datasets from the reviewed
papers that were made available by the researchers on their
individual webpages. Herzen et al. [68]] provided a dataset
used to predict throughput based on basic performance metrics
(e.g., received power, channel width) collected in a small
testbed} Cell vs. WiF{% is a publicly available dataset
based on an Android application that collects packet-level
traces of TCP downlink and uplink traffic between a mobile
device and a server for both WiFi and cellular networks. The
dataset was used in [318]] to find hidden dependencies in
low level WiFi performance data. Polese et al. [[112] released
an experimental waveform datase generated using the NI
mmWave transceiver system with 60 GHz radio heads, as well
as the source code using Keras API for training and testing ML
model Similar measurement data for indoor mmWave using
802.11ad from the papers by Aggarwal et al. [107], [108] is
also available{ﬂ Rice University’s LiveLab datase@ contains
long-term measurements from real-world smartphones about
their usage (e.g., CPU time) as well as data collected over a
WiFi interface (e.g., periodic readings of available WiFi access
points). The dataset was used in [319].

The available datasets provide mostly raw measurements
(e.g., RSSI, CSI) or traces of sniffed WiFi traffic which can be
used to find anomalies with ML techniques. For example, Fulara
et al. [320] tried to detect causes of unnecessary active scanning
performed by WiFi stations. Moreover, there exist datasets
meant for WiFi-based applications (e.g., human detection,
activity recognition, people tracing, traffic classification) which
rely on ML. We believe that those datasets can be also used to
improve the performance of WiFi networks. For example, if an
AP knows that a traffic flow is a long-lived flow (e.g., a video
transmission) it might perform some long-term optimizations to
improve the flow quality that would not make sense in the case
of a short-lived flow. Also, the location tracking of WiFi stations
can help a WiFi network prepare for a handover operation in
advance, which would result in faster handover execution and a
smaller number of outage events. Example datasets containing
location information and WiFi signal strength are available on
the Kaggle platfornﬂ

Finally, we believe that significant efforts have to be taken
to create large and high-quality datasets and encourage sharing

Bhttps://www.kaggle.com/
https://www.kaggle.com/mlomuscio/wifi-study
Shttp://www.hrzn.ch/data/lw-data.zip
19http://web.mit.edu/cell-vs-wifi/
htp:/hdl.handle.net/2047/D20409451
8https://github.com/wineslab/deepbeam
http://bit.ly/60ghz-link-adaptation
20http://livelab.recg.rice.edu/traces.html
2Uhttps://www.kaggle.com/c/indoor-location-navigation/
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them among the wireless research community. To this end,
it would be beneficial to create standardized procedures for
data collection to allow researchers to cooperatively build new
and extend existing datasets. The potential use of different
wireless platforms/testbeds for measurements might positively
impact learning performance (e.g., avoid model over-fitting).
Due to diverse hardware characteristics (such as TX power),
however, the created datasets have to be precisely described (i.e.,
provided with complete metadata) to avoid misunderstanding
and unnecessary debugging of the ML models.

IX. FUTURE RESEARCH DIRECTIONS

Through all of the previous sections, we have overviewed,
discussed, and systematically classified many research works
aiming to improve WiFi through machine learning. All these
works have a similar motivation: the use of ML to find
what are the best decisions that a WiFi network, or its
different functionalities, can make to offer better performance
in constantly changing and heterogeneous scenarios. Although
we covered over 200 papers, they represent only the first step
of a long path towards fully adopting ML in future WiFi and
wireless networks in general. In the following, we describe
several general open challenges and suggest potential future
research directions.

A. Dealing with New and Flexible but Complex WiFi Features

In recent years, the catalogue of available WiFi function-
alities has been rapidly expanding to include more complex
features to cope with current and expected user needs. For
example, IEEE 802.11be will incorporate multi-link operation
and, possibly, multi-AP coordination in addition to already
existing features such as OFDMA, downlink and uplink MU-
MIMO, spatial reuse, and channel aggregation. A common
aspect of most of these functionalities is that they offer a
high degree of flexibility to schedule traffic in time, space,
and frequency, which, if properly used, may enable high-
performance gains.

To achieve this goal, ML techniques may play an important
role, enabling self-adaptation to different situations and sce-
narios, as well as improving decision making by leveraging
past information to predict which actions will perform the best.
For example, multi-band WiFi devices can use ML methods
to predict link quality and select links accordingly [3].

B. Joint Optimization of WiFi Features

Most of the discussed papers focus on the optimization of
a single WiFi feature like the CW of WiFi’s channel access
function. However, it becomes clear that separate WiFi features
cannot be optimized in isolation. Instead they must be jointly
optimized with others to achieve the best possible performance.
As an example consider the tuning of transmit power and
carrier sensing threshold. Hence, the research on ML schemes
suitable for joint optimization of multiple WiFi features is a
promising future research direction. Especially developing ML
solutions with a fast learning speed are of great importance
due to the high complexity involved.


https://www.kaggle.com/
https://www.kaggle.com/mlomuscio/wifi-study
http://www.hrzn.ch/data/lw-data.zip
http://web.mit.edu/cell-vs-wifi/
http://hdl.handle.net/2047/D20409451
https://github.com/wineslab/deepbeam
http://bit.ly/60ghz-link-adaptation
http://livelab.recg.rice.edu/traces.html
https://www.kaggle.com/c/indoor-location-navigation/

C. ML-enhanced WiFi Features by Design

Most of the discussed works build ML functionalities
on top of current WiFi features, interacting with them by
tuning their parameters. An open challenge and a disruptive
future approach would be to re-design these functionalities
by explicitly embedding ML capabilities in them. Heuristic
algorithms or hard-coded rules could be replaced by ML agents
able to self-configure based on gathered experience [80], [321].
For example, in spatial reuse, the transmission power is adjusted
following a set of predefined rules and this may unnecessarily
limit the achievable throughput in some scenarios. Providing
guaranteed QoS is another challenge for future WiFi networks
which could benefit from being designed with built-in ML
capabilities [5].

D. ML-based Architectures and Standardized Interfaces

Another open challenge to solve is where to perform and
execute certain ML-related actions, which in the case of WiFi
networks may include the device, the AP, a controller in the
network edge, and a controller in the cloud. In any case, the
answer to this question requires knowing aspects such as the
tolerable latency required to obtain the output of an ML process,
the available information to perform it, and the computational
resources. The design and orchestration of distributed ML
solutions that adapt to the pros and cons of each case is still
an open challenge, requiring the definition of new interfaces
as well as how and when to exchange data and ML models
between components.

A pioneering work dealing with these aspects for WLANSs
is [322]], where the International Telecommunications Union
(ITU) unified architecture for 5G and beyond is extended to
support ML techniques at multiple levels, from the end device
to the cloud. The work in [[322] is complemented with [312],
where the ‘sandbox’ element of the ITU-T architecture to
execute off-line training and validation of ML techniques and
models is further analyzed and discussed.

E. Set of Reference Evaluation Scenarios and Performance
Metrics

Almost all published papers considering ML techniques
conclude they can significantly improve system performance.
While we do not question these results, we simply point
out the lack of a set of common scenarios, which prevents
the comparison of the results between different papers, and
therefore makes it challenging to extract solid conclusions
and to track the progress in the area of using ML for WiFi.
Designing these scenarios in a way so they are useful to test ML
solutions is challenging. Specifically, the evaluation scenarios
should cover a wide range of difficulty levels. For example,
in the beginning, training phases, small stationary scenarios
can be helpful to illustrate and debug how ML solutions work.
However, later on, the environment dynamics should be also
taken into account, as they must be complex enough to include
non-straightforward situations. Specifically, successful ML-
based proposals should be tested in large, heterogeneous and
dynamic scenarios to show that they properly adapt and scale
to different conditions.
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Additionally, the use of a set of common scenarios will foster
another open challenge: to perform reproducible research. This
is an important aspect, and also a significant open challenge,
due to the amount of information required to reproduce exactly,
step by step, the same environmental conditions and ML process
responses in different places. The use of detailed and accurate
datasets may contribute to making this possible.

F. ML-enhanced Network Simulation Tools

The development and maintenance of reference scenarios is
much easier with a set of standardized and commonly accepted
by the research community simulation frameworks. However,
there is still a lack of such tools, which would allow seamless
integration of ML solutions. Although there have been some
attempts to solve the situation (e.g., the OpenAl module for ns-
3 [82] and Komondor [159]), we are still far from a point where
general networking simulators will allow including ML routines
by default. To reach this point will be challenging, as we need
to (i) define standard interfaces between WiFi components and
ML functions and (ii) model the execution times required by
ML instances in terms of the virtual simulation time.

G. Testbeds and Real Pilots

The previous discussion regarding the need for scenarios
and suitable simulators can be directly extended to the need for
testing the correct operation of ML-enhanced functionalities
in real networks, not only to validate their correct operation,
but also to run experiments in conditions that simulators may
not able to reproduce accurately. Therefore, the development
of platforms and testbeds that support experimental research
of WiFi-enhanced ML networks is a crucial aspect before
deploying these solutions in real networks. An important aspect
to consider, and which should be included in the design of
ML-aware solutions, is that they will have to coexist with non-
ML enabled solutions, and so potentially negative interactions
should be considered in advance.

H. Risks of ML Uncertainty

Following the previous points, it is important to explicitly
tackle situations in which the use of ML techniques causes
unpredictable performance, and may compromise the correct
operation of a certain feature or even the whole WiFi network.
An open challenge is to design robust ML solutions that
may sacrifice performance in general to prevent unexpected
behaviours in particular scenarios.

ML-based models are highly successful and provide superb
performance in many complex tasks, however, so far they are
applied in a black-box manner, i.e., no information is provided
about what exactly makes them arrive at their decisions. This
lack of transparency can be a major drawback and might remain
a limiting factor for the broad adoption of ML-based algorithms
in the area of wireless network control. Specifically, giving up
human control to an intelligent black-box brings the risk of
improper behaviour or unsafe decisions that might be dangerous
for the operation of wireless networks, which in many cases
may be considered critical infrastructure. In recent years,



research on explaining and interpreting deep learning models
attracted increasing attention: the work of Samek and Miiller
[323]] targets validation of agent behaviour and establishing
guarantees that they will continue to perform as expected when
deployed in a real-world environment. Furthermore, due to
explaining the internal structures, researchers hope to learn
from ML-based agents capable of learning patterns that are not
tractable by humans. To conclude, the explainability of ML
agents will be of significant importance for the verification
and certification (i.e., checking compliance with regulations)
of ML-based wireless network control systems.

I. New ML Models and Distributed Learning

Finally, the last but obvious open challenge is the need
to consider recent advances in ML techniques, which will
certainly go together with the definition of new ML-based
architectures and WiFi features. For instance, due to its recent
introduction, there are still few papers considering federated
learning (FL) models for WiFi. FL is a distributed machine
learning paradigm where a set of nodes cooperatively train a
ML learning model with the help of a centralized server and
without the need to share their local data [324]]. Specifically,
nodes train their own local model based on local (on-device)
data, and then send the model parameters to the server, which
in turn merges parameters from different nodes and sends the
combined (global) parameters back to the distributed nodes.
We expect that FL will be of paramount importance for the
optimization of WiFi networks, as it allows training models
with individual data (e.g., available at stations or at the AP)
while also preserving user privacy.

Transfer learning (TL) is another concept that might be
helpful for wireless networks in general. It is an ML method
where a model trained on one task is re-purposed on a second,
related task. Usually, some re-training is required to fine-tune
the model towards the second task. However, TL often allows
saving time or obtain better performance in comparison to the
development of a model from scratch [325]]. This technique
works only if the model features learned from the first task
are general. In the context of wireless networks, TL might
be applicable when reusing models trained in networks of a
different technology (e.g., interference recognition in LTE) to
boost the performance of WiFi networks.

X. CONCLUSION

ML is playing an increasing role in the field of improving
WiFi performance. This survey has presented a comprehensive
overview of over 200 recent ML-based solutions for a variety
of performance areas. We started with basic WiFi features
(such as channel access and rate adaptation), then we moved
to more complex aspects (such as channel bonding, multi-
band operation, and network management) and the problem of
coexistence with other network technologies in shared bands.
Next, we gave a brief overview of the application of ML to
multi-hop WiFi settings. Finally, we summarized the tools and
data sets available for researchers in this field. To the best of
our knowledge, this is the first such survey to focus solely on
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WiFi networks and to provide a detailed analysis of different
WiFi aspects that can be supported through ML.

Revisiting Fig.[2] our analysis shows that supervised learning
is often used for data classification while reinforcement learning
and deep learning — for parameter optimization; unsupervised
learning is less frequently used in general. Meanwhile, the most
often used ML mechanisms are: Q-learning, multi-armed bandit,
as well as different kinds of neural networks (ANN, DNN,
and CNN). In most cases they were implemented to optimize
only a constrained set of 802.11 parameters. Additionally, from
reviewing the comparative Tables [[| to [V] we observe that with
the increase in computing power, DL methods are gaining in
popularity.

We believe that, as a next step, researchers will try to identify
ML schemes for the joint optimization of a wider ranges
of WiFi features. Additionally, they should investigate the
coexistence of ML-controlled and legacy networks, since it
poses a possible source of unfairness in channel access. We
also expect that the attractiveness of this area of research will
continue to grow. To support this statement, we have identified
a number of open research directions which could serve as a
guide for researchers in their future work.

APPENDIX A
LIST OF ACRONYMS

5G fifth-generation mobile networks
6G sixth-generation mobile networks
A-MPDU  aggregated MAC protocol data unit
A-MSDU  aggregated MAC service data unit
ABP adaptation-based programming
ABS almost blank sub-frame

AC access category

ACK acknowledgment

Al artificial intelligence

AIFS arbitration inter-frame space

AL adaptive learning

ANN artificial neural network

AP access point

ARF auto rate fallback

ARMA autoregressive moving average
BS base station

BSS basic service set

CARA collision-aware rate adaptation
CCA clear channel assessment

CDF cumulative density function

CFO carrier frequency offset

CNN convolutional neural network
COSB channel observation-based scaled backoff
COTS commercial off-the-shelf

CR cognitive radio

CRAHN  cognitive radio ad hoc network
CRN cognitive radio network

CSAT carrier sense adaptive transmission
CSI channel state information

CT classification tree

Ccw contention window



DBCA
DCB
DCF
DCM
DCNN
DDPG
DDQN
DFES
DL
DNN
DPP
DQL
DQN
DRL
DSRC
DT
DTN
EDCA
EIED
EM
EMA
eNB
FCS
FDR
FER
FFNN
FL
FWA
GBRT
GCN
GNA
GNN
HA-DBCA
HARQ
HetNet
HMM
HWMP
IDS
IoT
iQRA
ITE
ITU
kNN
KPI
LASSO
LBT
LiBRA
LiFi
LMT
LoS
LPA
LPWAN
LR-WPAN
LST™M
LTE
LTE-A
LTE-LAA
LTE-U

dynamic bandwidth channel access
on-demand channel bonding

distributed coordination function

duty cycle management

deep convolutional neural network
deep deterministic policy gradient
double deep Q-network

dynamic frame selection

deep learning

deep neural network

determinantal point process

deep Q-learning

deep Q-network

deep reinforcement learning

dedicated short-range communications
decision tree

delay tolerant network

enhanced distributed channel access
exponential-increase exponential-decrease
expectation maximization

expectation modification algorithm
evolved Node B

frame check sequence

frame delivery ratio

frame error rate

feed forward neural network

federated learning

fixed wireless access

gradient boosted regression tree

graph convolutional networks
Girvan-Newman algorithm

graph neural networks

hybrid adaptive DBCA

hybrid automatic repeat request
heterogeneous network

hidden Markov model

hybrid wireless mesh protocol

intrusion detection system

Internet of things

intelligent Q-learning based resource allocation
iterative trial and error

International Telecommunications Union
k-nearest neighbor

key performance indicator

least absolute shrinkage and selection operator
listen before talk

learning-based beam and rate adaptation
light fidelity

logistic model tree

line of sight

label propagation algorithm

low-power wide area network

low-rate wireless personal area network
long short-term memory

Long Term Evolution

LTE-Advanced

LTE-Licensed Assisted Access
LTE-unlicensed

LTR
M2M
MAB
MAC
MADDPG
MANET
MCS
MDP
MEC
MFNN
MH-GAN

MHCP
MIMO
ML
MLP
MLR
MME
mmWave
MOS
MRL
MSE
MTL
MU-MIMO
MUSE
NACK
NB
NB-IoT
NCA
NFV
NLoS
NN
NR-U
OFDMA
OLS
OLSR
PDS
PHY
PNN
POMDP
QL
QNN
QoE
QoS
RAT
RAW
REPT
RF
RFR
RL
RNN
RSSI
RTS
RU
SAP
SARA
SARSA
SBCA
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learning to rank

machine to machine

multi-armed bandit

medium access control
multi-agent deep deterministic policy gradient
mobile ad hoc network
modulation and coding scheme
Markov decision process
multi-access edge computing
multi-layer feed-forward neural network
Metropolis-Hastings generative adversarial net-
work

Matérn hard-core processes
multiple-input multiple-output
machine learning

multilayer perceptrons
machine-learned ranking

mobile management entities
millimeter wave

mean opinion score
multi-resolution learning

mean square error

multi-task learning

multi-user MIMO

MU-MIMO user selection
negative acknowledgment

naive Bayes

narrow-band IoT

normalized channel access
network functions virtualization
non-line of sight

neural network

New Radio-Unlicensed

orthogonal frequency-division multiple access
ordinary least squares

optimized link state routing
post-decision state-based

physical

probabilistic neural network
partially observable Markov decision process
Q-learning

Q neural network

quality of experience

quality of service

radio access technologies
restricted access window

reduced error pruning tree

random forest

random forest regressor
reinforcement learning

recurrent neural network

received signal strength indicator
request to send

resource unit

spatial adaptive play

stochastic automata rate adaptation
state action reward state action
static bandwidth channel access



SBS small base station

SD-WLAN software-defined WLAN

SDN software-defined networking
SDR software-defined radio

SGI short guard interval

SL supervised learning

SNR signal to noise ratio

SOHMMM self-organizing hidden Markov model map
SR spatial reuse

SS spatial stream

STA station

SVM support vector machine

SVR support vector regressor

TCP transmission control protocol
TL transfer learning

TS Thompson sampling

TXOP transmission opportunity

UAV unmanned aerial vehicle

UCB upper confidence bound

UE user entity

USL unsupervised learning

V2X vehicle-to-everything

VANET vehicular ad doc network
VCFG virtual coalition formation game
VLC visible light communication
WARP wireless open access research platform
WLAN wireless local area network
WMN wireless mesh network

WSN wireless sensor network

YOLO you only look once
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