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Abstract— With improvements to ranges and a growing
charging infrastructure, electric vehicles are becoming increas-
ingly popular. However, many prospective owners can not
charge their vehicle at home. They thus would have to use
public charging infrastructure, which reduces the appeal of
electric vehicles to them due to the extra effort and time spent
during charging. Many previous works tried to enhance this
situation by using intelligent charging station scheduling and/or
route planning to reduce the time overhead. But most solutions
are focused on long distance travel or single trips without
considering the often regular schedule of drivers in urban areas.
We propose a charge stop planner that takes into account the
activities of a driver’s daily schedule to minimize the additional
time the driver has to spend charging the vehicle. The charging
stops can either be en-route charging at fast charging stations
between two activities or destination charging at slow charging
stations. To reduce waiting times, we coordinate the charging
station visits between the vehicles with a centralized service.
In an extensive set of simulation experiments, we demonstrate
that our approach reduces the additional time for charging by
about 40 %, compared to only destination charging and only
en-route charging. The charging station coordination further
reduces the waiting time by about 50 %.

I. INTRODUCTION

Electric vehicles are becoming increasingly popular. Until
recently, due to short ranges and long charging times, they
were often only feasible if a charger was available at home or
at least nearby. Now that batteries are improving, the increased
range and fast charging capabilities make them attractive also
to people who cannot charge at home. However, fast charging
stations are still not as fast as filling up at a gas station and
they are usually a lot more expensive then slow charging
stations [1].

In many cities, there are more slow charging stations
available, because they are cheaper to build and less burden on
the power grid. In Germany the public charging infrastructure
consists of 33811 slow charging stations and 5630 fast
charging stations as of February 2021 [2]. Slow charging
stations are typically used while the driver stays at his
intended destination (also called destination charging). In
comparison, fast charging stations are more likely used for
en-route charging, i.e., the driver stops to charge and waits by
his vehicle like at a gas station. Overall, the inconvenience
caused by having to use the public charging infrastructure
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is a big barrier for buying electric vehicles if there is no
possibility to charge at home.

In this context, quite some work has been done to improve
the situation for electric cars. Recent work can be grouped
into three lines of research. First, the identification of mobility
and, thus, charging pattern, e.g., [3], [4]. Second, scheduling
of charging attempts to reduce the waiting times at charging
stations, e.g., [5]-[9]. Third, optimizing the route planning
for electric cars to take energy constraints into account and,
in some cases, plan recharging stops, e.g., [10]-[13].

Most of these works focused on only one of these aspects.
Some works, e.g., our charging station database (CSDB)
approach [14], tried to take all three aspects into consideration
but only for long-distance rides.

In this paper, we bridge this research gap and study
coordinated electric vehicle charging in urban environments
based on the daily schedule of the drivers. We focus on an
inner city scenario, where the distances are small enough,
that most drivers would not need to charge the vehicle to
reach all destinations of the day, if it were fully charged.
We further assume the driver does not have a charging
station at home or near his home and has to charge at the
public charging infrastructure. In particular, we present an
approach to minimize the additional time incurred by using
the public charging infrastructure. By taking into account
the drivers schedule when planning the trips for the day, we
can select optimal routes and charging stops. The charging
stops can either be en-route charging between two activities
or destination charging near an activity of the schedule. In
our scenario, we reduced the additional time for charging by
about 40 %, compared to only en-route charging and only
destination charging. By coordinating the charging station
visits between the vehicles with our CSDB approach, we can
further reduce the waiting time at charging stations by 50 %.

Our main contributions can be summarized as follows:

o We developed a novel charge stop planner algorithm
that optimizes charging stops while minimizing the time
spent during charging (III);

« we extended our previous CSDB solution to coordinate
vehicles’ routes and charging stops (IV); and

« we performed an extensive set of simulation experiments
to demonstrate the advantages of our solution (V).

II. RELATED WORK

There are many works in literature that are concerned
with charging station scheduling and electric vehicle routing.
Especially in the context of smart grid, where the objective is
usually to limit the impact of electric vehicle charging on the



power grid. This is usually achieved by setting charging price
incentives to shift the load from peak to off-peak hours [4],
[15]-[17]. In some cases, a service assigns charging stations
to the electric vehicles to minimize charging cost and/or
waiting time [9], [11], [12], [17]-[20].

Especially in an urban scenario with destination charging,
taking user behavior or mobility patterns into account is
important [3]. Some smart grid focused works consider
mobility patterns to forecast energy demand and schedule
charging stations accordingly [4], [16]. Other works, e.g., [17],
[21], consider that the driver could charge while they park
near and then walk to the final destination (destination
charging). Gerding et al. [21] describe a park ’'n charge
scenario, where the driver parks near and then walks to the
final destination, as a real-work scenario for their system. In
a different scenario, they also considered en-route charging,
but they did not combine the scenarios, so that there would
be a choice between them. Yang et al. [12] present a route
selection and charging navigation strategy that can take into
account destination charging as well as fast charging en-
route if necessary to reach the destination. However, none
of these works consider the day’s schedule of the driver to
make charging decision or compare en-route charging with
destination charging.

Charging an electric vehicle even at a fast charging station
is still not as fast as filling up a conventional vehicle. The
number of charge points at charging stations is limited and
if there is no coordination between the vehicles, this will
lead to queues and long waiting times. A possible solution
to this problem is a reservation system, where the vehicles
can reserve a time slot at a charging station in the future
and can therefore plan their trip accordingly to avoid waiting
times. Many publications make use of such a reservation
system [6]-[9], [22], [23], sometimes with the possibility
to update the reservation, if needed [23]. Most of these
systems have a first-come-first-serve policy, but some can also
prioritize reservations, leading to cases where high priority
vehicles can charge before others even if they arrive later at
the charging station [7]. Hou et al. [8] use a scheduler that
allocates reservations based on user given information about
their time preferences. Due to the assumption that users are
selfish and do not want to reveal their true time preferences to
avoid unfavorable time slots, they propose an iterative auction
which, by progressively eliciting the users’ preferences as
necessary, preserves their privacy. A different approach is
a centralized service that knows about the current charging
station utilization and can give vehicles advice on where to
charge [24]. The vehicles could also announce their charging
intentions to this service, so that it can predict the waiting
time in the future. De Weerdt et al. [5] call this intention-
aware routing. They combined the information about charging
intentions with historical data and were able to reduce waiting
times in some cases by about 80 %.

Recently, some approaches for charging station and route
selection have been using deep reinforcement learning. It
enables them to make complex decisions in a stochastic
environment with changing conditions like traffic, weather,

dynamic charge prices etc. by learning an optimal policy.
Qian et al. [19] present a charging navigation solution which
aims to minimize the total travel time and charging cost.
It can take into account waiting times at charging stations,
traffic conditions and charge prices, thereby coordinating
smart grid and intelligent transportation systems. However,
they do not consider direct coordination between vehicles,
but simply assume that charging stations know how long
the waiting times will be. Lee et al. [9] propose a similar
system where there is coordination between vehicles with
a reservation system and charging decisions are made by
a central service. However, both solutions suffer from poor
scalability. They evaluated very small instances with graphs
of only 39 nodes and three charging stations. Zhang et al.
[20] use deep reinforcement learning for planning charging
scheduling at a larger scale. They evaluated instances of a big
city with more than 1000 charging stations. However, these
works also do not consider the day’s schedule of the driver
or compare en-route charging with destination charging.

Finding an optimal route for an electric vehicle is more
difficult than for a conventional vehicle. The constraints
of the battery, especially the limited range, have to be
accounted for. This can further include recuperation, also
called regenerative braking, i.e., charging the battery when
slowing down or driving downhill. Finding the shortest path
that also considers such battery constraints is a Constrained
Shortest Path (CSP) problem [25]. To find the fastest route
that is reachable with a limited range, a multi-criteria shortest
path search can be performed using the criteria travel time
and energy consumption. This results in all Pareto optimal
paths for these criteria and we can, for example, choose the
one with the best travel time that still fulfills the energy
constraints. A multi-criteria shortest path search is very
computationally expensive. It is possible to use a modified
version of Dijkstra’s algorithm [26], but it is not practical for
graphs of realistic sizes [13]. To accelerate the search we can
use contraction hierarchies introduced by Geisberger et al.
[27]. In a preprocessing step, shortcuts are added to the graph
that can later speed-up the path finding query significantly, by
reducing the number or nodes that need to be visited when
exploring the graph. Contraction hierarchies were originally
intended for conventional shortest path searches, but can also
be used to speed-up multi-criteria path finding to solve the
CSP [13].

In large graphs, multi-criteria path finding can be too slow
in practice even with contraction hierarchies. In our previous
work [28] we introduced shortest-path tree precomputing
in combination with contraction hierarchies as a way to
accelerate queries even further. The most computationally
expensive part of the query is the creation of a Pareto set of
labels at each visited node while exploring the graph. In a
preprocessing step, we explore the graph for nodes that will
likely be the origin or destination of queries, and save the
resulting shortest-path trees. This is only feasible because
the number of nodes that need to be visited is significantly
reduced by the contraction hierarchies. By exploiting the fact
that most routes are queried between the known locations



of the charging stations, we were able to accelerate these
queries by about two orders of magnitude.

In this paper, we go one step further by considering the
drivers day’s schedule when making charging decisions. We
can select between en-route charging between two activities
and destination charging near an activity to minimize the time
the driver has to spend with charging the vehicle. Additionally
we use our shortest-path tree precomputing approach to select
optimal routes and coordinate charging between the vehicles
to minimize waiting times.

III. CHARGE STOP PLANNER

Our charge stop planner tries to find optimal charging stops
for electric vehicles that minimize the time spent with the
charge process by the driver within his day’s schedule. We
assume to know the schedule of the driver, which consists of
activities, i.e. times and locations the driver visits with his
vehicle throughout the day, like going to work, shopping,
leisure activity, etc. It could be extracted from previous
behavior or may be supplied by the driver himself.

We divide the schedule into segments, for which we can
make separate charging decisions. Each segment consists
of one activity including the drive to that activity. Figure 1
shows an example of a day’s schedule, divided into three
segments. The day’s schedule ends at the final destination,
therefore the last segment only consists of a drive.

For each segment, we can select from a number of
alternatives. There are three charging alternatives, as can be
seen in Figure 2. The first alternative is to drive directly to the
activity and parking the vehicle there without charging. The
second alternative, en-route charging, is to drive to a charging
station, charge there and continue to drive to the activity. The
driver may have to wait until the charging station is free if it
is occupied on arrival and stays with the vehicle while it is
charging. When evaluating the alternative, we estimate the
waiting time with our CSDB (cf. Section IV). Because of the
time the driver has to be with his vehicle, this is usually only
feasible with fast charging. We only plan to charge to 80 %
State of Charge (SOC), because the charging speed decreases
significantly after that point. The third alternative, destination
charging, is to drive to a charging station near the activity,
parking there and walking to the activity while the vehicle
charges. The driver saves time by not having to be with his
vehicle while it charges, but may have additional walking time
to and from his intended activity. We can limit the walking
time, to account for the fact, that many people would be
unwilling to walk very far, even if it saves them time overall.
This is suitable for slow charging stations, especially if the
driver stays a long time at the activity. We assume to charge
the vehicle as long as the driver is staying at the activity,
which could result in less than 80 % SOC, if the driver only
stays for a short time. If he stays longer than necessary for a
full charge, the charge point will be blocked by the vehicle,
because we assume the driver will not interrupt his activity
to unplug and park the vehicle somewhere else.

In addition to the three charging alternatives, we have to
select a route when driving to the activity or to and from the
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charging stations. To minimize time, we could always take
the fastest route, but in some cases it might actually take less
time if we take a slower, but more energy efficient route, if it
saves us charging time later. The route must also respect the
energy constraints of the vehicle, i.e. keeping the battery SOC
positive. We efficiently calculate all Pareto-optimal shortest
path from the fastest to the most energy efficient by using
shortest-path tree preprocessing [28].

Of course, for the second and third charging alternative,
we also have to select the charging station. For each segment,
we iterate over all alternatives, routes and charging stations
and calculate the time and SOC at the end of the segment.
We discard all results for which we have a better alternative
which requires less time and has a higher SOC. The remaining
results should have at least one direct drive and one charge
alternative. The result time and SOC is used as a basis for
the next segment. Charging times depend on the vehicles
SOC, and waiting time estimates depend on the arrival time.
Because a segment can have several result alternatives, we
have to calculate the next segment results for each alternative,
thereby creating a result tree.

After all segments have been calculated, we can select
one of the result alternatives from the final segment as our
end result. Because each result has a predecessor result in
the result tree, we thereby also select the alternative for
each segment that lead to this result, including routing and
charging decisions. We can select the result based on some
criterion, such as having a minimum battery SOC of 70 % at
the destination or having charged at least once.

IV. COORDINATION OF VEHICLES

We coordinate the charging station visits of electric vehicles
with our CSDB approach that we introduced in [14]. The
concept of the CSDB can be seen in Figure 3. It is a
centralized service, that can estimate waiting times at any
charging station in the future, so they can be taken into
account by the charge stop planner of the vehicle when
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making charging decisions. The vehicles that want to use it,
have to announce their planned charge stops to the service
in advance. It also receives information about the current
utilization of charging stations and stores historical data about
charging station utilization internally.

Compared to a reservation system, where the vehicles
reserve time slots in the future, we believe this approach
is far more practical. There cannot be a situation, where a
vehicle with a reservation is late and one charge point has to
remain vacant even though there are other vehicles waiting to
charge. This could lead to reduced average utilization and bad
experience from drivers not using the system The CSDB does
not require cooperation with the charging station providers,
apart from providing information about the current utilization,
which many providers already provide as a service to potential
customers. The system also does not require every vehicle to
take part in it to be useful.

The estimation of waiting times is accomplished by
combining three data sources. The current utilization of
a charging station is known to the database in the form
of occupied charge points and the time when the vehicles
occupying the charge points will depart. The announced
planned charge stops of the vehicles include an estimated
arrival time and charge time at the charging station. To fill in
gaps of vehicles that do not announce their planned charge
stops, we use historical data of the utilization of the charging
station. The historical data is gathered by the CSDB itself
and contains the statistical average utilization of the charging
station for each hour of the day. When we combine this data,
we can forecast the utilization of the charging station in the
future and use it to estimate waiting times.

The data in the CSDB can quickly change as additional
vehicles announce their planned charge stops. This means
that estimated waiting times, which were queried by the
charge stop planner at the beginning of the day, might have
significantly changed by the time the vehicle arrives at the
charging stations. Therefore, to keep the plan optimal, we
update it at the beginning of each trip segment.

’«J\»
RN
LA
AR ==Sim

e

> ot

11111

Fig. 4. Overview of the Paderborn traffic scenario with slow charging
stations (blue) and fast charging stations (red)

V. PERFORMANCE EVALUATION

A. Experiment Setup

In our experiments, we simulate one day (24 h) of drivers
driving to various activities of their day’s schedule and
wanting to charge their electric vehicle at some point using
the public charging infrastructure. We assume the electric
vehicle has a 60kWh battery and an initial SOC of 20 %.
The goal is to minimize the time spent with charging the
vehicle and to reach the final destination with an SOC of at
least 70 %. This allows the vehicle to charge to 80 % at a
fast charging station and then still reach the destination.

B. Paderborn Scenario

The schedules of the drivers in this work are based
on the Paderborn traffic simulation scenario [29]. It is a
road traffic simulation scenario for SUMO [30] and models
the City of Paderborn, a typical mid-sized European city
of around 150000 inhabitants. The scenario contains the
core of the city as well as outskirts (cf. Figure 4). It
includes both major highways (e.g., the Autobahn A33 and
Bundesstrassen B1, B64, and B64) as well as urban roads and
residential areas. The traffic demand of the scenario consists
of more than 200000 trips over a 24 hour period, with up
to 3000 simultaneously active vehicles. The resulting daily
traffic demand curve resembles real-world measurements. It is
derived from the daily activities of a population simulated with
SUMO’s ACTIVITYGEN tool. Each trip models an individual
activity, e.g., going to work or University, taking kids to
school, driving into the city for shopping, etc. Individuals of
the simulated population then each have a day plan of these
activities.

We have extended the Paderborn scenario with the existing
charging infrastructure of Paderborn [2]. This includes 15
slow charging stations with a power of 22 kW and two charge
points each, and two fast charging stations with a power of
150kW and four charge points each.



C. Energy Consumption and Driving Times from SUMO

Our charge stop planner makes routing decisions based on
the required energy and time to drive the route. Therefore,
to make useful decisions, we need to accurately model these
criteria. Especially in an urban setting, like the Paderborn
scenario, factors such as traffic density can play an important
role. To create an accurate model, that is not prohibitively time
expensive to run, we start off with simple models for energy
consumption and driving times. We then use the microscopic
traffic simulator SUMO to increase the accuracy of these
models.

Our simple driving time model is based on the assumption
that vehicles always drive at the speed limit, i.e., the driving
time ¢ can be expressed as

t= Z Uvi:m? ’ (l)

reR "

where 7 € R are the route segments, [, is the length, and
v*** is the speed limit of a route segment.

Our energy consumption model for electric vehicles is
based on the driving speed. The driving speed impacts the
energy consumption due to friction and air drag, which are a
function of the speed. In addition, other energy consuming
components of the vehicle need to be considered, e.g.,
entertainment system, air conditioning, and the head and tail
lights. These components are speed-independent and therefore
dominate the energy consumption per km at lower speeds.
The used energy B is calculated as a function of the speed
o B=005+ -0 12 2
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By simulating each individual vehicle with a car-following
model, SUMO takes factors like traffic density into account
and can provide accurate driving times, assuming a realistic
traffic scenario is used. It also has an accurate energy
consumption model for electric vehicles [31].

To improve the accuracy of our models, we ran the
Paderborn scenario in SUMO with slight modifications, such
as defining all vehicles as electric vehicles and removing non
passenger vehicles like busses. The electric vehicles were
configured as generic electric vehicles with the default settings
from SUMO. We exported edge based measurement data, i.e.,
plain edge data and emissions edge data, which contains
aggregated electric vehicle energy consumption, from SUMO
and extracted average driving time and energy consumption
values for each edge. We then compared these values with the
values of our simple models and assigned a correction offset
to each edge. This way, our models can estimate driving
speeds and energy consumption a lot more accurately, for all
edges used in the simulation run. For the other edges, our
simple models act as a fallback. The adjusted models are
used by our charge stop planner and for the evaluation.

D. Charging Model

Traditionally, many authors in the field of charging station
scheduling and electric vehicle routing assumed that the
charging speed of electric vehicle batteries is constant [11],

[15], [16]. However, in reality, this speed is very nonlinear
after reaching about 80 % of the battery’s SOC. It actually
decreases considerably at that point [32].

Modern lithium-ion batteries are charged with the CC-CV
(constant current — constant voltage) charging protocol [32].
The charging process follows a two-phase approach. In the
first phase, a constant current approach is used for charging
the battery. During this time, the charge voltages continuously
rises. This process continues until the charge voltage reaches
4.2V and the SOC is at about 80%. Now the second
phase starts using a constant voltage approach to prevent
overcharging. In this phase, the current steadily decreases.
The charging process is assumed to be complete when the
current falls below a predefined threshold. Alternatively, a
CP-CV (constant power - constant voltage) protocol can be
used. Here, the charge power is constant in the first phase.
Otherwise, it is very similar to the CC-CV approach.

For our purposes, we use the following battery charging
model, which supports both the CC-CV and the CP-CV
approach. We assume that the voltage increase is linear in
the first phase and, for simplicity, the current decrease is
also linear in the second phase, which is consistent with
the literature [32]. For our model, we use the following
variables: The maximum charging power of the charging
station is defined as p,q,- The SOC of the battery is defined
as soc in the range 0 < soc < 1. In the first phase (constant
current/power), the charging voltage increases from w;,, =
3.8V to upsgn = 4.2V. The phase switch happens exactly
at soc = 0.8. The maximum current can be calculated as

lmaz = 5"’:0@ .
Now, the current i(soc) and voltage u(soc) for the CC-CV
charging approach can be calculated based on the SOC of

the battery as

2 f 0.8
i(SOC) _ erﬁaz ‘ or soc < ’ (3)
55" *imaz for soc > 0.8
u(soc) = Ujow + %(Uhigh — Ujpw) for soc < 0.8 ’
Uhigh for soc > 0.8
“4)
pcc-cb(SOC) = U(SOC) . i(SOC) . (5)
Similarly, the power p¢p.c,(S0c) can be calculates as
Pmax for soc < 0.8
cp-cv = . 6
Pep-cu(s0€) {u(soc) -i(soc) for soc > 0.8 ©

In our model, we estimate the power every second and
terminate the charging process when SOC reaches soc = 0.99.

In a first validation step, we compared our battery charging
model with published measurements of an electric vehi-
cle [33]. The results are shown in Figure 5. Even though
the charging protocol is not mentioned for the measurement
data, we can see that the CP-CV approach in our model
very closely matches the measurement results. Actually, the
CP-CV approach has a relative error of +2 %, whereas the
CC-CV protocol has a relative error of more than 10 % at
the beginning of the charging process. We conclude that the
vehicle was charged using the CP-CV approach.
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E. Experiments

In our first experiment, we evaluate how much extra time
the driver has to spend with charging the vehicle. With extra
time, we mean the time the driver has to spend compared
to just driving to the activities of the day’s schedule without
charging at all. We compare our strategy with only en-route
charging and only destination charging. We calculated the
trips for 1038 vehicles of the Paderborn scenario and averaged
the results.

As can be seen in Figure 6, our strategy takes far
less extra time than the alternative strategies. It takes on
average 21.2 min extra time to charge the vehicle with our
strategy, which is an improvement of about 40 %, compared
to only en-route charging and only destination charging,
which take 35.3min and 35.8 min extra time respectively.
En-route charging requires the driver to wait by the vehicle
to finish charging, which is why it is mostly feasible for fast
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Fig. 7. Travel times and destination charging share for different walking
times limits (per way)

charging. To reach fast charging stations, the drivers have to
drive detours which leads to additional driving time. With
destination charging, the vehicle charges while the driver is at
an activity of his day’s schedule, but the driver might have to
walk to the activity from the charging station and back. In our
scenario, there are many activities at locations where there is
simply no charging station nearby, which leads to very long
average walking times. It is, of course, unrealistic to assume
that drivers would be willing to walk that far, which means
that only destination charging is not a feasible strategy for
our scenario.

We can limit the walking time for destination charging to
make it more realistic, but the limited choice of charging
stations will lead to more time spent with charging overall.
In Figure 7, we can see that limiting the walking time to
5 minutes per way reduces the share of destination charging
from nearly 60 % to about 20 %. The drivers that have no
charging station within 5 minutes of an activity of their day’s
schedule have to drive detours to fast charging stations which
increases the time spent with charging significantly.

This result is, of course, highly dependent on the available
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charging infrastructure. For our Paderborn scenario, we
can conclude that the density of charging infrastructure is
not sufficient for the majority of drivers to conveniently
charge their vehicle with destination charging. In our further
experiments, we have limited the walking time to 10 minutes
per way.

In our next experiment, we evaluate the effect of different
maximum charge powers on the travel times. Our Paderborn
scenario contains two fast charging stations with a charge
power of 150 kW. But most vehicles today are not capable
of charging that fast, especially not continuously [34]. We
compare three maximum charging speeds, S0kW, 100 kW
and 150kW. For charging at slow charging stations, this
makes no difference.

In Figure 8, we can see that slower maximum charging
speeds significantly increase the travel time due to additional
charging time. The share of destination charging increases
slightly from 34.8 % for 150kW, to 36.1 % and 37.0 % for
100kW and 50kW respectively. The share of destination
charging is already limited by the 10 minute walking time
limit which eliminates this option for many drivers.

In our last experiment, we evaluate the effectiveness of
our CSDB approach to coordinate charging between vehicles
to reduce the extra time spent with charging. We varied the
number of vehicles that need to charge at the same day
from 0.1-1.0 % of all vehicles. This percentage is not to be
confused with the share of electric vehicles in the city. It
is much lower because the majority of electric vehicles are
charged at home and the ones that have to use the public
charging infrastructure do not charge everyday.

In Figure 9, it can be seen that coordinating the vehicles
with our CSDB reduces the time spent with charging by about
half. Due to the limited number of charging stations and long
charging times, waiting times still significantly increase the
extra time spent with charging.
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Fig. 9. Average time spent with charging depending on electric vehicle
rate with and without using the CSDB

VI. CONCLUSION AND FUTURE WORK

We presented an approach to coordinate electric vehicle
charging with the goal to minimize the extra time drivers have
to spent with charging their vehicle. The driver’s schedule is
taken into account when planning a trip for the day including
charge stops either en-route between two activities or near
an activity of the schedule. To prevent long waiting times at
the charging stations, we use our centralized CSDB, which
knows about the utilization of charging stations and to which
vehicles can announce their planned charge stops. Based on
this data, it can estimate waiting times in the future, which
other vehicles can take into account when planning their trips.

To evaluate our approach, we used the Paderborn traffic
simulation scenario which gives us realistic traffic and
schedules of drivers for one day. We showed that our approach
reduces the required extra time for charging by about 40 %,
compared to only destination charging and only en-route
charging. In some cases, destination charging was the most
time efficient option even if the charging station was not
close to the activity and the driver had to walk for a long
time. Because we assume drivers are not willing to walk very
far, we tried limiting the walking time to different values. We
found that limiting the walking time to 5 minutes reduces
the share of destination charging from nearly 60 % to about
20 % and increases the extra time for charging from 21 min
to 30 min, because many drivers then have to charge en-route
and wait with their vehicle while it is charging.

Of course, this result is highly dependent on the scenario
and the available charging infrastructure. It also reveals that
the density of charging stations in our scenario is not high
enough to conveniently charge the majority of electric vehicles
with destination charging. As the number of electric vehicles
that depend on the public charging infrastructure grows, the
need for coordination between these vehicles does as well.
Especially slow charging stations can lead to long waiting
times. By using our CSDB in combination with our charging



strategy we could reduce the waiting by about 50 %.

We showed that it makes sense to not only focus on
destination charging at slow charging stations or en-route
charging at fast charging stations, but a combination of both.
In future work, we want to tackle the question on how we
could extend the charging infrastructure in an urban scenario
to make charging more convenient for drivers that have no
way to charge at home, with the focus on finding a good
balance between slow and fast charging stations.
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