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1 Abstract
As a formal theory, Bundesen’s theory of visual attention (TVA) enables the
estimation of several theoretically meaningful parameters involved in attentional
selection and visual encoding. As of yet, TVA has almost exclusively been used in
restricted empirical scenarios such as whole and partial report and with strictly
controlled stimulus material. We present a series of experiments in which we test
whether the advantages of TVA can be exploited in more realistic scenarios with
varying degree of stimulus control. This includes brief experimental sessions
conducted on different mobile devices, computer games, and a driving simulator.
Overall, six experiments demonstrate that the TVA parameters for processing
capacity and attentional weight can be measured with sufficient precision in less
controlled scenarios and that the results do not deviate strongly from typical
laboratory results, although some systematic differences were found.

2 Introduction
In most areas, psychological research methods stress the value of strict control:
According to common psychological thinking, drawing conclusions from data
presupposes an appropriate choice and manipulation of independent variables,
tight control of possible confounding factors, reduction of random noise, and
randomization of participants. In more everyday settings—“in the wild”—such
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control would not be possible which is one of the main reasons to study phenomena
in the laboratory.

However, through the reproducibility crisis (e.g., Open Science Collaboration,
2015), we have learned that even data obtained in controlled laboratory studies
are far less reliable than had been expected. We do not aim to get into details
of what can be expected in terms of reproducibility and what the causes of
the present crisis are (for a summary of potential problems with scientific
practices in psychology see, e.g, Chambers, 2017), but want to stress one of
those causes, a lack of cumulative theory (Muthukrishna & Henrich, 2004).
Without theoretical frameworks and respective formal models, it is difficult to
come up with precise and unambiguous predictions for yet unobserved situations
that allow testing hypotheses. If these predictions are not precise and do not
adhere to some formal framework, separating expected from unexpected results
is difficult and undesired flexibility when interpreting results can hinder true
progress. Theoretical frameworks also enable the consistent use of more than one
empirical approach per research question and provide a means for integration
across different disciplines.

In the present article, we explore a new approach in the field of visual
processing and selective attention in which we turn around the usual scheme:
Instead of adhering to the strictest laboratory settings and model-free null-
hypothesis significance testing, we employ more flexible game-like experimental
paradigms with rigorous models that formally link the results of the different
experiments we conduct and existing findings in the literature. Our question is to
which degree results obtained under such conditions match up with measurements
obtained with a lab- and model-based agenda. Nested in this overall question,
we also ask whether orientation and color salience bias temporal-order judgments
as reported in earlier studies (Krüger et al., 2016, 2017).

Administering fundamental attention experiments in a more flexible, game-
like manner potentially brings many advantages that might make up for the loss
in experimental control and a possibly increased (but quantifiable) uncertainty
in the results. For instance, more flexible experiments could be delivered via app
stores and web browsers to large and diverse participant pools and motivational
elements can be more easily integrated in game-like scenarios. In the end, easy
large-scale access, flow and motivation, combined with a model-based evaluation
could lead to a superior overall data quality despite losses in experimental control.

2.1 A simple task and model for investigating visual pro-
cessing and selective attention “in the wild”

Formal models are an important means to foster cumulative theory and an
important part of scientific progress. Many topics have a research history of
several decades, and it is almost indefensible not to try to formalize the core
knowledge that researchers have already obtained. Verbal research summaries are
poor surrogates for this (Meehl, 1990); they may help to derive hypotheses that
can be put to an empirical test, but are prone to inexactness and ambiguity and
much less suited for describing complex relationships between possible influences.
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Put very generally, the main function of a formal model in empirical sciences
is to connect theoretical considerations and data. Models are customizations of
theories such that these become applicable to some of the concrete properties
of the phenomena by filling in the gaps between latent causes and data (Bailer-
Jones, 2009). According to Bailer-Jones, two important parts of modeling are
the theoretical model and the data model. The theoretical model is derived from
the theory, and it is necessary as a model of the situation in which the data is
observed. It represents the theoretical considerations in a specific situation. The
data model is necessary to deal with the uncertainty arising from data collection
in a specific experiment, for instance measurement uncertainty. Modeling thus
provides a tight coupling of theory and data (Krüger et al., 2018).

For the present work, we derive a formal model from Bundesen’s theory
of visual attention (TVA; Bundesen, 1990; Bundesen & Habekost, 2008). Its
parameters are defined theoretically and cognitively specific (e. g. Habekost,
2015). Different from unspecific parameters such as error rates or response times,
TVA’s parameters have a closely defined meaning that can be traced into cognitive
functions. This makes them – and experimental tasks such as those presented
below – very valuable for answering theoretical as well as applied questions.
We will come back to this topic in the General Discussion. With a TVA-based
model we set up the data model as a Bayesian parameter estimation scheme.
This enables the estimation of attention and visual processing parameters of the
individual participants and the whole group. Moreover, in this approach the
uncertainty of the estimates is explicitly available for subject- and group-level
estimates as well as for comparisons between conditions.

How does TVA model visual stimulus processing? TVA is a race model in
which stimuli in the visual field compete for being encoded into visual short
term memory (VSTM). Once stimuli are encoded, they can undergo further
processing, being transferred to other memory systems or guiding behavior. The
race for VSTM occurs in a two-wave procedure (Bundesen et al., 2005): In an
unselective first wave, “attentional weights” are assigned to every stimulus x in
the visual field:

wx =
∑
j∈R

η(x, j)πj (1)

where R represents feature categories that might be relevant in a task (e.g.,
colors if the task is to report, say, blue and red objects), η(x, i) is the sensory
evidence that stimulus x has feature j (e.g., medium for a pink stimulus being
red), and π is the pertinence of feature j (e.g., high for target colors blue and
red and low for other features).

In the second wave of processing (selective wave), these weights determine how
processing resources (TVA parameter C) are distributed across the visual field,
leading to a processing rate for each stimulus. This processing rate determines if
and when a stimulus is encoded in VSTM. Higher rates lead to earlier and more
certain encoding. At lower rates, stimuli proceed more slowly and are less likely
to be encoded because VSTM might be filled up before they finish processing.
The VSTM capacity (TVA parameter K) is typically smaller than four items.
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The formal calculation of processing rates will be explained later in section 3.2
in the context of the present experimental paradigm.

Summing up, TVA makes a quantitative connection between latent but
theoretically interesting distinct components of attentional processing such as
attentional weights, VSTM, and processing speed. It has been used with different
experimental paradigms: whole and partial report (e.g., Bundesen & Habekost,
2008), attentional dwell time (Petersen et al., 2013), or temporal-order judgments
(Tünnermann et al., 2017). Recent developments have been summarized by
Bundesen, Vangkilde, and Petersen (2015). Moreover, TVA integrates different
views, such as behavioral and neuronal interpretations of visual processing
(Bundesen et al., 2005). It is also used in the clinical context, facilitating new
diagnostic applications (for a review, see, Habekost, 2015).

In the present article, we send TVA into the wild by relaxing stimulus control
on the one hand and embedding the task into game-like dynamic scenarios on
the other hand as motivated above. Experiments 1, 2, and 3 contrast a typical
lab experiment with one running in a browser on mobile devices. Experiments
4, 5, and 6 implement both factors by using a game engine and a gaming task
(flying and driving a bike). One might object that none of this releases TVA into
real life or real wild. However, compared to typical psychological experiments
with their strict control, we take, to say the least, several large steps, and
prepare the ground for possible further progress. Before turning to the individual
experiments, we describe the temporal-order judgment (TOJ) paradigm, which
is at the core of all experiments, in general and how exactly a model of TOJs
can be derived from TVA.

3 General Method

3.1 Experimental paradigm and relationships between the
experiments

The experimental paradigm is a temporal-order judgment, an easy experimental
task with a long tradition of lab-based research (Sternberg & Knoll, 1973) in
which the participants indicate which of two stimuli appears first or, alternatively,
second. Readers familiar with TVA may wonder why we did not use one of
the more common tasks such as whole and partial letter report or combiTVA
(Bundesen, 1990; Vangkilde et al., 2012). One reason is that the TOJ task is very
simple and can be done by very different groups including children (Petrini et al.,
2020), animals (Wada et al., 2005) and neurophysiologically impaired persons
(Rorden et al., 1997). The other reason is that the more common TVA tasks
presuppose a large set of equally recognizable well learned stimuli, for instance
letters. The present method works with virtually any material as long as two
asynchronous stimuli can be presented

In the TOJ, we use a flicker instead of the more common onset of stimuli
(e.g., Tünnermann, 2016) because it is better suited for estimation of attention
parameters in multi-element displays (Krüger et al., 2016). The flicker is realized
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by a temporary change of the stimulus display. It is implemented by an offset
and re-onset after a brief delay of a few hundredth of a second. The two stimuli
are clearly identifiable because they are marked by a special feature such as size
or orientation, or, in one of the experiments (Experiment 6), are pointed out to
the participants as such.

The flicker of the two targets (depicted in abstract form in Figure 1) is
separated by an interval that we call SOA (stimulus onset asynchrony) which is
in accordance with the TOJ literature although, strictly speaking, it is a flicker
onset asynchrony in our experiments. The range of SOAs is chosen so that the
judgment accuracy of the participants varies between chance (at an SOA of 0
ms) and few mistakes at the largest SOA.

Figure 1: Illustration of a typical TOJ task. This example sequence shows a
negative SOA, at which the probe stimulus (here a star) leads. At positive SOAs
the reference (circle) would lead

.

In all experiments, we increase the salience of one stimulus in an experimental
condition and keep it equal for both stimuli in a control condition. The salience
boost is known to bias attention and consequently influence processing speed
and order judgments. The resulting pattern of attentional weights—balanced in
control conditions and biased in favor of attended stimuli—is well documented in
laboratory experiments (Krüger et al., 2016, 2017). Whether and to what degree
this pattern can be detected “in the wild” is a research question we address here.
Even in lab settings, the distribution and activation of attentional resources
likely are subject to influences beyond the experimental stimulation. Some
attention might be directed at irrelevant parts of the apparatus (e.g., the layout
of response keys), and motivation might modulate the overall resources dedicated
to correct execution of the task. Such influences might be both stronger and more
diverse outside the lab, especially when the task is embedded in less restrictive
contexts. They might also work in both directions: Motivation, for instance,
could be higher, leading to more pronounced effects in less restrictive settings
while the distribution of attention over the experimentally relevant stimuli might
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be diluted by uncontrolled influences of the environments. It is outside the scope
of the present article to tease apart all the different influences on attention and
quantify how their impact differs between lab and “wild” settings. Instead, we are
interested in whether we can find the known patterns caused by salience-induced
attention biases despite the variable and unknown influences. The model-based
estimation of meaningful attentional parameters aids the comparison of the
outcomes. However, the degree to which our experiments deviate from the
typical lab setting varies between the experiments and some include a typical
lab-version of the task as a control. We present the experiments ordered by
decreasing restrictiveness and experimental control and increasing complexity of
the overall task.

In Experiments 1 to 3, we conduct—with different salience manipulations—
a typical lab TOJ task both in the lab and on an uncontrolled selection of
mobile devices. While the mobile experiments retain several aspects of the
typical presentation (e.g. non-interactive one-shot trials followed by keypress
responses), other factors become less controlled (e.g., stimulus size and viewing
distance, or how well web browsers on mobile devices implement the intended
timing). Experiments 4 to 6 embed the TOJ task in interactive environments.
Experiments 4 and 5 use games, which introduce several dynamic aspects such as
changing object sizes and positions caused by the apparent ego-motion although
the experimental displays are still artificial (just more dynamic) multi-element
arrangements. Experiment 5 explores the influence of the additional factors
adaptive vs. constant gaming speed and SOA size on the attention measurements.
During these experiments, the responses are given by controlling game elements
with the computer keyboard. Experiment 6 finally leaves computer keyboards
or response boxes behind and places the participants on an actual bicycle on
a roller trainer which is connected to a traffic simulation. Here participants
perform TOJs by navigating the bike over simulated objects that implement the
flicker task. The objects with the experimental salience manipulation compete
with a multitude of visual influences experienced in dynamic scenes.

3.2 Formal model
How can insights on visual processing and attention be gained from TOJ data?
Fitting traditional psychometric functions (based on the logistic function or the
cumulative Gaussian distribution) provides only relative latency measures (e.g.,
“stimulus x is perceived as appearing 20 ms earlier than stimulus y”) and discrim-
ination performance measures. These components provide no direct information
about how attention is distributed across the stimuli and how fast these are
processed (for instance, it cannot be distinguished whether attended stimuli are
processed faster or if unattended ones are processed slower; Tünnermann et al.,
2015).

The model of TOJs used to estimate relative attentional weights and process-
ing speed parameters from all experiments in the present study can be derived
from Bundesen’s (1990) TVA (Tünnermann et al., 2015):

According to TVA, the probability that a stimulus x is encoded until time t
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is given by

F (t) =

{
1− e−vx(t−t0) if t > t0

0 otherwise,
(2)

where vx is the rate with which a stimulus is encoded into VSTM and t0 is a
threshold time. For presentations up to t0, no effective encoding occurs. In
TVA, vx can be further decomposed into overall processing capacity and relative
attentional weights. We use the term “attentional weight” to refer to TVA’s
relative attentional weight (cf. Equation 3 to 8). These parameters are composed
of more fine-grained ones that model pertinence (low-level filters, e.g. “red is
important, blue not”) and bias (report category biases, e.g. “letters are to be
reported, numbers must be ignored”). The formal model of how these fine-
grained components produce attentional weights can be found, for instance, in
Tünnermann et al. (2015). For the present study, it is sufficient to relate TVA’s
encoding to TOJs. Assuming that temporal order is judged based on the VSTM
entry order, the probability of reporting the probe stimulus as appearing first
(Pp1st) can be calculated as follows:

Pp1st(vp, vr, SOA) =

1− e−vp|SOA| + e−vp|SOA|
(

vp
vp+vr

)
if SOA < 0

e−vr|SOA|
(

vp
vp+vr

)
if SOA ≥ 0.

(3)

Here, vp and vr are the processing rates of the probe and reference stimuli with
which they race for VSTM encoding. The first part of the first case, for the SOAs
smaller than zero (in which the probe leads), is the probability that the probe
is encoded before the reference even starts racing for VSTM (1 − e−vp|SOA|).
The second describes the probability that this has not happened (e−vp|SOA|) and
that the probe wins the race for VSTM when both, probe and reference, race
together (vp/(vp + vr)); Luce’s choice axiom (Luce, 1977). The second case, for
SOAs larger than zero (in which the reference leads), the probability of “probe
first” judgments is e−vr|SOA|, the probability that the reference is not already
encoded before the probe is shown and that the probe wins when both race
together (vp/(vp + vr)). Note that this model does not include t0. Because t0 is
assumed to be equal for both stimuli (adding equal latencies), it cancels out in
the equations (cf. Tünnermann et al., 2015).

For the present study, it is advantageous to re-parametrize this model so that
instead of individual processing rates vp and vr the overall processing rate C
and attentional weights (w∗p) can be estimated. According to TVA, the overall
processing rate C is the sum of the processing rates of the individual encodings:

C =
∑
x∈S

∑
r∈S

v(x, i). (4)

Moreover, TVA states that the individual rates v(x, i) with which stimuli x are
encoded into VSTM as members of category i are calculated as

v(x, i) = η(x, i)βi
wx∑
z∈S wz

(5)
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where η(x, i) is the sensory evidence that stimulus x is a member of category
i and βi is a bias for encoding stimuli as members of category i. The w are
attentional weights and S refers to all stimuli in the visual field. In the following
we will use vp and vr for simplicity to refer to v(p, i) and v(r, i), the rates with
which probe and reference are encoded as members of their report categories.

The experiments in the present study (in line with other TVA-based TOJ
experiments) are designed so that both η(x, i) and βi are the same for the probe
and reference stimuli. That is, neither of the two has a higher η (e.g., better
visibility) nor is its report category more important (higher β) than the other.
Therefore, only the attentional weight part ( wx∑

z∈S wz
) of Equation 5 is different

for the two stimuli. Consequently we can assume that the processing rates are
equal when they are divided by the attentional weights part:

vp
wp + wr

wp
= vr

wp + wr

wr
(6)

This can be rearranged to

vp + vp
wr

wp
= vr + vp︸ ︷︷ ︸

C

(7)

where vp + vr (all individual processing rates) can be substituted with C (cf.
Equation 4). Taking further into account that wp + wr = 1 (because there are
only two stimuli that acquire attentional weights) the equation can be simplified
to

vp = C · wp

wr + wp︸ ︷︷ ︸
w∗p

(8)

That is, the processing rates vp (and similarly vr) in Equation 3 can be replaced
by the term above. The main benefit of this is that when fitting experiments
with more that one condition, a common C can be estimated for both conditions
whereas individual w∗p are estimated for each condition. Note that w∗p is a relative
weighting (Krüger et al., 2017; Tünnermann & Scharlau, 2018c) that expresses
the attentional advantage of the probe stimulus relative to the attentional
weighting of all modeled stimuli. For the sake of simplicity, we call w∗p the
“attentional weight”. The model structure is further detailed below.

3.3 Bayesian parameter estimation
The TVA-based TOJ model derived above is embedded in a hierarchical Bayesian
parameter estimation. The model structure is depicted in Figure 2. Note that the
inner structure is contained twice to model one “neutral” condition (N) and one
“salient” condition (S) in agreement with the design of most of the experiments
of this study. A common C (TVA’s overall processing rate) is estimated across
the conditions. Earlier research has shown that C remains unchanged under
attentional manipulations (e.g. Krüger et al., 2016) and hence we can pool the
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Figure 2: Hierarchical model structure (left) and priors and deterministic depen-
dencies (right).

information about C from both conditions. However, for each condition an
individual attentional weight of the probe stimulus w∗p is estimated (note that
w∗r , the reference’s weight can be obtained as 1−w∗p). For neutral conditions, w∗p
is expected at .5, indicating that attention is equally divided between probe and
reference. For salient conditions, w∗p is expected to be larger than .5, indicating
that attention is biased toward the salient probe stimulus. As indicated in
Figure 2, overall estimates of the w and C parameters are obtained as the means
of the corresponding distributions estimated for the participant.

The models were implemented in pymc3 (Salvatier et al., 2016) and estimated
using the NUTS sampler (Hoffman & Gelman, 2014) with 5000 samples (in each
of four chains). For attentional weights, uniform priors with the range zero to one
(equal a priori probabilities for all possible attentional weights) were used. For
the overall processing rate C a uniform range corresponding to zero to 250Hz
was used (0–0.25 items/ms). This reflects a conservative choice, given that
earlier studies found C typically around 70Hz. Where not indicated otherwise,
estimates in the results section refer to group-level estimates obtained as means
of the participant-level posteriors. We report the full posterior distribution
together with the mode (as a point estimate of a parameter) and the boundaries
of 95% Highest Probability Density (HPD).

4 Experiment 1
In this first experiment, we move the experimental setup into the “wild” but
keep the experimental paradigm identical to typical lab-based TOJ experiments
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Figure 3: A Experimental setup in the lab condition with accurate timing on a
CRT monitor, controlled viewing distance with a head rest. B Browser condition
on a mobile device with less control of stimulus timing, viewing distance and
posture.

(Krüger et al., 2016, 2017). In fact, we include a within-participants control
condition performed in the usual lab setup. In the experimental condition,
we have participants perform a typical lab task in the web browsers on their
own mobile devices under typical office conditions. Why might researchers be
interested in using typical tasks but collecting data “in the wild”? After all, we are
losing, at least to some degree, control over the exact circumstances under which
the experiment takes place, such as the general viewing conditions, and spatial
and temporal aspects of the presentations. The use of web-based setups enables
crowd-sourcing large datasets and can help to avoid WEIRD samples(western,
educated, from industrialized, rich, and democratic countries; Henrich et al.,
2010). Moreover, when researchers have no or limited access to laboratories,
online experiments can be a way out. Our experiments predated COVID-19 but
certainly the pandemic lead to an urgent need for online experiments in most
psychology labs.

Especially researchers who use psychophysical tasks, such as the TOJ in the
focus of the present study, typically shun away from giving up control of the
most basic variables such as accurate spatial and temporal stimulus presentation.
Here, we ask whether one can still obtain useful insights from such “uncontrolled”
data. The formal model and Bayesian estimation scheme enable the estimation
of meaningful parameters and quantification of uncertainties. The rationale of
Experiment 1 is to compare highly controlled lab-based TOJ data collection
with less constrained data collection to check whether under such conditions the
typical patterns can be replicated, and to assess the uncertainty of the estimates
and quantify the model fit.

In this experiment, we had participants perform a typical TOJ experiment.
In the experimental condition, we increased the salience of one target whereas
salience was kept balanced in neutral control trials. In a “lab” condition, partici-
pants performed the task in a usual lab setting with controlled viewing distance
to a time-accurate CRT monitor. In the browser condition, participants used
their own laptops, tablets, or mobile phones with various display sizes and uncon-
trolled viewing distance. Based on earlier studies, we expect w to be increased for
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a more salien target. We have no specific expectations concerning the influence
of the controlled vs. noncontrolled environment although we expect any possible
changes to be at most medium (cf. Semmelmann & Weigelt, 2017). Because
we are interested to which degree the parameters from lab-based experiment
and experiments outside the lab reflect the same construct, we report their
correlations.

4.1 Method
4.1.1 Participants

From earlier experiments that combined the TOJ paradigm with TVA modeling
(Krüger et al., 2016, 2017), we know that we need approximately 30 participants
to reach appropriately precise parameter estimates in experiments manipulating
salience and we aimed at this number in all the experiments. Due to organi-
zational reasons, more participants were available in some of the experiments.
Because the outcome of Bayesian parameter estimation does not depend on
sampling intentions or stopping rules (Dienes, 2011), we made use of the oppor-
tunity to further increase precision of parameter estimation and included these
participants in the experiments and analyses.

All experiments were approved by the ethics committee of Paderborn Uni-
versity. Thirty-seven persons (20 male and 17 female; Mage = 24.08, range
19–62) participated. All participants were students or members of Paderborn
University. Each participant gave informed written consent, reported normal
or corrected-to-normal visual acuity and received course credit or was payed 8
Euro per hour. In the browser condition, across all participants, 26 different
combinations of devices, operating systems (and versions) and browsers (and
versions) were used. If only the major release version of operating system and
browser are taken into account, the number of different combinations is 23. Two
participants completed only one instead of two sessions of the lab condition.
Because the Bayesian analysis accounts for the fact that these data sets are
less informative, we include these participants in the analysis. One participant
produced no usable data set due to a configuration problem with the monitor
(see Footnote 1).

4.1.2 Apparatus

The lab condition was conducted on a Microsoft Windows 10 PC with a 22”
Iiyama Vision Master Pro512 (40.4 cm× 30.3 cm) CRT monitor. A resolution
of 640 × 480 pixels was used with 32-bit colors and a refresh rate of 100Hz.
The experimental paradigm was implemented with OpenSesame (Mathôt et al.,
2012) and PsychoPy (Peirce, 2007). Presentation was time-synchronized with
the monitor’s vertical retrace signal. When the PC detected a mismatch between
the programmed SOAs and estimates of the realized SOAs (based on internal
clock time stamps and the monitor synchronization) which was larger than 1ms,
the trial was discarded and repeated later. Such repetition occurred on less than
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0.17% of the trials1.
The browser condition was conducted on mobile devices the students brought

to the lab, or, if they had no working mobile device available, in the browser of a
PC (Ubuntu, Firefox 70.0, 22” TFT-display, Acer V223W Ab, with 1680×1050 px
resolution). It was programmed using the JavaScript library jsPsych (de Leeuw,
2015). The scripts were transpiled with Babel.js, bundled with WebPack.js, and
served by JATOS (Lange et al., 2015). Pre-loaded images were used as stimuli.

The same SOAs were used in both conditions. These SOAs were divisible by
10ms which allowed accurate presentation on the 100Hz lab monitor. However,
it was expected that most mobile devices in the browser condition will not be
able to display these SOAs accurately, fostering rather uncontrolled timing.

The viewing distance on the lab computer was 50 cm, for the browser condition
it was not fixed. On the lab computers and participants’ laptops, the Q key
and the P key were used for collecting the order judgments. On mobile devices,
participants had to touch the corresponding side of the screen. The lab condition
took place in a dimly lit experimental booth, the browser condition under variable
daylight conditions in an office room.

4.1.3 Stimuli

An array of 16×8 bars with a fixation point in its center was shown (see Figure 3).
On the lab computer, the array encompassed 41◦ × 21◦ of visual angle. Length
and width of the bars were 1.37◦ and 0.32◦ plus a small jitter of 0.32◦ and 0.12◦.
The background color was a light gray (#c1c1c1), the bars were colored dark
gray (#7f7f7f), and the fixation mark was black. In the browser condition, the
layout was the same but sizes varied with the uncontrolled display size and
viewing distances.

Two positions, one on the left and one on the right, contained reference and
a probe stimuli. Both were darker than the other stimuli. Depending on the
condition (salient vs. nonsalient), the probe could be salient in its orientation
(90◦ difference from the background elements). The two positions were randomly
chosen among the inner positions in each hemifield. (The outer columns close to
the screen border and the fixation mark were excluded). Background orientation
was chosen randomly in each trial (equal for all background bars on a display
half) and differed by 90◦ between the left and the right half of the display.

After the display had been presented for 300ms plus a jitter (450 ms), probe
and reference flickered briefly by offsetting and onsetting again after 30 ms. The
flickers were separated by SOAs of ±100 ms, ±70 ms, ±50 ms, ±30 ms, ±10 ms,
or 0 ms. SOAs were repeated 20 times each. A video of the experiment can be
found at https://osf.io/sdk8r/?view_only=8aed2f9c6ca54d18b0456a4ce9662cd3.

1Except for one participant who did not finish the experiment because trials were continu-
ously repeated due to a monitor configuration problem.
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4.1.4 Procedure

Participants performed in four sessions, two of the lab conditions and two of the
browser conditions, in random order. Throughout each trial, participants were
instructed to fixate a point in the center of the display that was visible from the
beginning of each trial. There was no fixation control.

Observers judged which of the two flicker events appeared earlier, the event
on the left or the event on the right. Responses were given with the Q key and
the P key on the computer and by touching the corresponding half of the display
on mobile devices. The next trial started automatically. A short training of 10
trials allowed familiarization with the task. The main parts contained 440 trials
and a break was offered every 44 trials. The experiment lasted approximately
25 min.

4.2 Results and Discussion

Hz

Hz
*

*

Figure 4: Results of Experiment 1: Means for overall processing capacity, C,
and attentional weight of salient and nonsalient probe, w∗p, in the lab condition,
top, and the browser condition, bottom.

We first report the C and w values and their difference between conditions.
Afterwards, we look into correlations for each value between the lab and the
browser condition. Finally, we look at effect sizes of the salience effect in the
two conditions and compare the model fits.

We found a C difference between the lab and browser in overall capacity
(see Figure 4). In the lab condition, the mean overall processing rate C across
all participants was estimated at 62.32Hz [95% HPD: 59.86, 64.82] with an SD
of 21.76 [95% HPD: 19.26, 24.44]. In the browser condition, the mean overall
processing rate C across all participants was estimated at 51.91Hz [95% HPD:
49.60, 54.39] with an SD of 32.26 [95% HPD: 28.16, 36.53]. The difference in C
between the conditions is 10.41Hz [95% HPD: 6.92, 13.83].

The overlap of the wp posterior distributions is relatively large. In the
lab condition, the mean attentional weight of the nonsalient probe across all
participants was estimated at .50 [95% HPD: .49, .51] with an SD of 0.05 [95%
HPD: 0.04, 0.06]. The mean attentional weight of the salient probe was .53 [95%
HPD: .51, .54] with an SD of 0.06 [95% HPD: 0.05, 0.07]. This probe weight of
the salient target is .03 higher than that of the neutral one [95% HPD: .01, .04].
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In the browser condition, the mean attentional weight of the nonsalient probe
across all participants was estimated at .49 [95% HPD: .48, .51] with an SD
of 0.06 [95% HPD: 0.04, 0.07] and the mean attentional weight of the salient
probe at .51 [95% HPD: .49, .52] with an SD of 0.06 [95% HPD: 0.05, 0.07].
The probe weight of the attended stimulus is .01 higher than that of the neutral
one [95% HPD: .00, .03]. Comparing the attentional weight of the salient probe
between lab and browser, the difference is estimated at .02 [95% HPD: .00, .04].

Figure 5: Results of Experiment 1: The C estimates of the lab and browser
session are positively correlated while no such correlation is evident for the w∗p
estimates (salient probes only); BF = Bayes Factor.

TVA’s overall processing capacity C shows a strong positive correlation
between the lab and the browser condition supported by a very high Bayes factor
(see Figure 5, left panel; posterior modes of the participant-level estimates enter
the analysis and are shown in the scatter plot). The Bayes factor (calculated with
JASP JASP Team, 2019) quantifies how much more it is probable that the data
is positively correlated than that it has no positive correlation. Concerning w∗p of
the salience condition, there is no evidence in favor of a correlation (Bayes factor
below one; see Figure 5, right panel). Hence, although different in magnitude, C
remains an index of the participants’ processing capacity even under the rather
uncontrolled presentation conditions. The lack of a correlation in w∗p is most
likely due to the small size of the effect in the browser condition (cf. Figure 4,
lower right distribution pair) which may not be able to overrule the random
fluctuations introduced by the less controlled setting on the mobile devices.

To understand the difference between the same experiments in the lab and
in the wild and how it may influence the possibility to find effects known from
the lab, we calculated standardized effect sizes (Cohen’s d) for the salience effect
on w∗p and the probability of superiority. The latter is calculated from Cohen’s
d and gives the probability that in a random individual we measure a higher
w∗p in the salient condition than in the neutral one (cf. Grisson & Kim, 2005).
As Table 1 (first row) shows, effect size in the lab is larger than in the wild.
The same is true for the probability of superiority. Still, the mobile condition
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allows for a small effect and a .59 superiority which might suffice for a variety of
questions and when large enough samples are available.

Experiment ES wp∗ (lab) ES wp∗ (wild) PS wp∗ (lab) PS wp∗ (wild)
1 (Orientation) 0.48 [0.16, 0.84] 0.23 [-0.09, 0.54] .69 [.56, .80] .59 [.47, .71]
2 (Red–green) 1.18 [0.85, 1.55] 1.19 [0.85, 1.59] .89 [.81, .94] .89 [.81, .95]
3 (Yellow–blue) 1.54 [1.18, 1.95] 1.05 [0.74, 1.40] .95 [.89, .98] .86 [.78, .93]

Table 1: Effect size and probability of superiority together with their bound-
aries of 95% Highest Probability Density in the lab and wild conditions in
Experiments 1 to 3.

The reader may be interested in how well the theoretically derived model fits
the presumably more variable data recorded “in the wild” compared to the lab
recordings. Thus we provide a comparison of the goodness of fit for Experiments
1–4 because they have a lab and “in the wild” condition. Note, first, that although
we want our model to fit the data well, we also want it to be theoretically sound
which is why theory-free optimization of model fit (e.g. by adding parameters)
is no option for us. One important criterion for model fit is a visual check.
Figure 19 shows that for most participants the model curves well describe the
change of data points across SOAs. Another criterion is quantitative model fit.
How to quantitatively describe and test model fits is a very difficult question. A
widely used method to analyze the model fit are posterior predictive checks that
allow for sampling of a posterior predictive p-value (Conn et al., 2018). Similar
to classical p-values, the value states the probability of observing the present
or more extreme data under the fitted model. A low probability reflects lack of
fit. However, from a Bayesian perspective, the value is also a gradual indication
of goodness of fit. Values around .5 indicate good model fit (see Berkhof et al.,
2000, for details). The model check requires a discrepancy measure for which
we use a χ2 measure (c.f. Berkhof et al., 2000; Wichmann & Hill, 2001). We
compare the p-values in the lab and “wild” conditions and separately for large
and small SOAs, as more deviations can be expected at the smaller ones, which
are prone to problems in the presentation timing.

The results for the present experiment (Table 2, first row) indicate that
goodness of fit is strongly reduced in the browser condition, and it is also strongly
reduced for the small SOAs. That the lowest values are observed at smaller SOAs
is in line with findings that the central parts of TOJ psychometric functions
reflect additional processes which are not included in the model we use for this
study. An extensive assessment and discussion from a TVA perspective can be
found in Tünnermann and Scharlau, 2018b. In the browser condition, additional
deviations are evident (both in small p-values and the subject level plots in
Figure 19) which reflect the additional noise from conducting the experiment “in
the wild”. While these deviations might be statistically strong, we believe that
they do not interfere substantially with the estimation of the relevant parameters.
As can be seen in Figure 19, central deviations have little impact on the overall
shape of the fitted psychometric function.
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Experiment p-value Lab p-value “Wild”

SOAs all large small all large small
1 (Orientation) .038 .75 < .001 .004 .018 < .001
2 (Red–green) .548 .556 .481 .097 .249 .12
3 (Blue–yellow) .235 .451 .111 .018 .166 .004
4 (Dragonfly) .002 .003 .016 .047 .126 .051

Table 2: Posterior predictive check p-values of model fit for Experiments 1 to
4, separately for the lab and the browser condition as well as small (Exp. 1–3:
|SOA| <= 30 ms, Exp. 4: |SOA| <= 50 ms ) and large SOAs (remaining SOAs).

To compare the reliability of parameter estimates in lab and wild settings,
we conducted split-half tests, which are reported in Appendix Section A.6.
Concerning the C parameter, a ρ = .8 indicates a good reliability “in the wild”.
In fact, the score is higher than the ρ = .62 obtained for the lab condition.
The correlations of the halves are supported by high Bayes factors (cf. Table 3,
row 1). Concerning the w∗p estimates for the salient condition, the picture is a
different one. The estimated reliability is low (ρ = .25 in the lab and ρ = .13
in the wild) and these estimates and the correlation are rather uncertain (low
Bayes factors, see Table 3, row 1). To anticipate the outcomes of these tests
for the other experiments: the picture is similar. The C estimates are reliable,
whereas the estimated reliability of the w∗p is rather low (half of the estimates are
below ρ = .5), see Tables 3–5. However, two things must be kept in mind: The
reliability might be underestimated. The number of trials in these experiments
was already low and is further divided as part of this analysis. Only half of
the trials belong to the salience condition, and only half of those go into one
sub-sample for the split-half test. This leaves only 110 trials (in this experiment
and less in some others) to estimate the parameters of the individuals. Given the
small w∗p salience effect, especially in this experiment, the estimates might be too
noisy to produce a better reliability score. In practice, this can be counteracted
by including more trials (perhaps by replacing the neutral condition with more
salience trials). The second thing to keep in mind is that the purpose of the
present reliability estimation is to see whether or not the estimates obtained
from experiments conducted “in the wild” are less reliable than those form
lab experiments. Taken together, tables 3–5 show no indication of a generally
reduced reliability under less controlled conditions.

To sum up the results of Experiment 1, we found a difference in w in favor of
the salient target in both conditions, larger in the lab than the browser condition.
This pattern goes along with a strong difference in overall processing capacity C.
Mean C is substantially larger in the lab than in the browser condition. Although
both C estimates are reasonable for healthy adult participants, the difference
is in need of explanation. Most likely, the different presentation on smaller
screens and less controlled lighting reduces the C “in the wild”. Processing rate
C is a stimulus-dependent measure anyway and researchers should be aware
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that in uncontrolled conditions it can be expected to be lower. One might
want to counter this by increasing its visual impact (e.g., larger stimulus size,
higher contrast). Parameter C does however correlate highly between the two
conditions, indicating that it essentially probes the same process. The w∗p from
the salient condition do not correlate between the lab and “wild” condition. This
is somewhat unexpected. However, random noise in the individual estimates
might overrule the rather small rather small salience effect.

Effect sizes and probability of superiority are larger in the lab than in the
browser condition. Model fit is reduced in the browser condition, but the model
is probably still useful. Before too strong conclusions are drawn, we want to test
the reliability of these findings. This is the purpose of Experiments 2 and 3.

5 Experiment 2

A B

Figure 6: Exemplary displays with color salience used in Experiments 2 and 3.
The slightly larger line segments constitute the probe and reference elements that
flicker (separated by the stimulus onset asynchrony) to produce the temporal-
order judgment stimulation.

In Experiment 1, the TOJ paradigm and TVA-based modeling worked rea-
sonably well with experiments run in a web browser on varying and unselected
(mobile) devices. However, C estimates (and to a lesser degree in terms of
distribution overlap w∗p estimates) seem to be biased toward smaller values. The
attention effect on the probe attentional weight w∗p was only just detectable. Ex-
periments 2 and 3 test the reliability of this pattern and expand the comparison
to the feature dimension color which might be affected more strongly by relaxing
control than stimulus orientation.

Experiment 2 considered color salience of two colors with complementary a
values in the CIELAB color space (L = 50, a ∈ {50,−50}, b = 0). Note that a
regular screen was used without color calibration and hence the differences in
LAB values only approximately adhere to the uniformity of the CIELAB color
space. However, given that colors are diametrically apart on the chromacity axes,
a strong hue difference that should lead to a relative salience effect apparent in
TVA’s attentional parameters is guaranteed. Except for the salience feature, the
experimental procedure is the same in as Experiment 1; minor modifications are
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described in the following.

5.1 Method
5.1.1 Participants

Thirty persons (9 male and 21 female; Mage = 23.41, range 19–45) participated.
All participants were students or members of Paderborn University. Each
participant gave informed written consent, reported normal or corrected-to-
normal visual acuity and no color vision deficits and received course credit. All
completed two sessions in each of two conditions, except two participants, who
were only available for one session in the browser–mobile condition.

5.1.2 Apparatus

This time, both conditions used the browser-based implementation. In the
browser–PC condition, the experiment was run on the lab PC with CRT monitor
from Experiment 1. In the browser–mobile condition, again the experiment was
conducted on the (mobile) devices participants brought to the lab.

5.1.3 Stimuli

Stimuli were the same as in the preceding experiment, except for the following
differences: The probe’s orientation did not differ from the surrounding back-
ground bars’ orientations. All bars had the same randomly chosen orientation
and differed by 90 degrees between the left and the right side. The two tar-
gets were slightly larger than the background elements in order to make them
easily distinguishable as targets (see Figure 6. Stimuli were either red (LAB:
L = 50, a = 50, b = 0; RGB: #c14e79) or green (LAB: L = 50, a = −50, b = 0;
RGB: #008c75), and the probe target could be salient by having the alternative
color (red among green or green among red). The reference target always had
the same color as the background elements. A video of the experiment can be
found at https://osf.io/sdk8r/?view_only=8aed2f9c6ca54d18b0456a4ce9662cd3.

5.1.4 Procedure

The procedure was the same as in Experiment 1. The experiment lasted approx-
imately 25 min.

5.2 Results and Discussion
In the browser–PC condition the mean overall processing rate C across all
participants was estimated at 57.81Hz [95% HPD: 55.07, 60.45] with an SD of
28.81 [95% HPD: 25.29, 32.59]. In the browser–mobile condition the mean overall
processing rate C across all participants was calculated as 34.48Hz [95% HPD:
32.90, 36.11] with an SD of 16.02 [95% HPD: 14.23, 17.71]. The difference in C
is 23.33Hz [95% HPD: 20.22, 26.48]. In the browser–PC condition the neutral
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mean attentional weight of the probe across all participants was estimated at .50
[95% HPD: .49, .51] with an SD of 0.05 [95% HPD: 0.04, 0.06], and that of the
salient probe at .58 [95% HPD: .56, .59] with an SD of 0.07 [95% HPD: 0.06,
0.09]. The estimated weight of the salient stimulus is .08 higher than that of the
neutral one [95% HPD: .06, .09]. In the browser–mobile condition the neutral
mean attentional weight of the probe across all participants was again estimated
at .50 [95% HPD: .48, .51] with an SD of 0.05 [95% HPD: 0.04, 0.06], that of
the salient probe at .57 [95% HPD: .55, .58] with an SD of 0.06 [95% HPD: 0.05,
0.08]. The estimated weight of the salient stimulus is .07 higher than that of
the neutral one [95% HPD: .05, .09]. Comparing the attentional weight of the
salient probe between the PC and mobile conditions, the difference is estimated
at .01 [95% HPD: -.01, .03].

*

*

Figure 7: Results of Experiment 2: Means for the overall processing capacity,
C, and attentional weight of salient and nonsalient probe stimulus, w∗p, in the
browser–PC condition, top, and the browser–mobile condition, bottom.

The overall result pattern in Experiment 2 is very similar to Experiment 1.
We found an increased attentional weight of a salient stimulus. This is in
accordance with earlier studies (Krüger et al., 2016, 2017). The increase was very
similar for the conditions run on the PC and on an unselected mobile device.

Worth noting is the difference in the parameter C. Again, C is much smaller
when doing the experiment on a mobile device, and the mean of 34Hz is very
low.

In contrast to Experiment 1, not only the C estimates but also the w∗p
estimates (of the salience condition) from the browser-PC and browser-mobile
condition show strong positive correlations (see Figure 8). Hence, it seems that
if strong salience effect can be established “in the wild”, the pattern of individual
differences found in the lab can be largely reproduced.

Effect sizes are very large, and so is probability of superiority (see Table 1,
second row)). What is more—and different from Experiment 1—both effect size
and probability of superiority are the same for the lab and the mobile condition.

The model fit assessment (Table 2, second row) indicates that goodness of
fit is reduced in the browser–mobile (“Wild”) condition, compared to the lab
condition. It is not as low as in Experiment 1. In fact, the browser–mobile
condition seems to have a better fit than the lab condition of Experiment 1.
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Figure 8: Results of Experiment 2: As in Experiment 1, in Experiment 2 the C
estimates of the browser–PC and browser–mobile session are positively correlated;
the w∗p values (salient probes only) show a similar correlation in this experiment;
BF = Bayes Factor.

We also point to Appendix Figure 20 for plots individual data and fits and the
split-half reliability tests, which are reported in Appendix Section A.6.

Because the variety of mobile device participants bring to the lab and to
further vary the salient feature, we run another version of the experiment with
other colors as Experiment 3.

6 Experiment 3
Experiment 3 is a replication of Experiment 2 with different color values (yellow
and blue; LAB: L = 50, a = 0, b ∈ {50,−50}). As everything except for the color
axis in the CIELAB color space was the same, we expect the same results as in
Experiment 2.

6.1 Method
6.1.1 Participants

Thirty-two persons (2 male and 30 female; Mage = 22.31, range 14–35) par-
ticipated. Except for one person, all participants were students or members
of Paderborn University, gave informed written consent, reported normal or
corrected-to-normal visual acuity and no color vision deficits and, if students,
received course credit. All performed two sessions per condition, except one
participant who only completed one of the browser–PC sessions and another
person who completed only one of the browser–mobile sessions.

20



6.1.2 Apparatus

The apparatus was the same as in the preceding experiment.

6.1.3 Stimuli

Stimuli were the same as in the preceding experiment, except for the colors which
were determined setting a = 0 and b ∈ {50,−50} in the CIELAB color space.
The exact color values were #887616 (yellow; LAB: L = 50, a = 0, b = 50) and
#367ACD (blue; LAB: L = 50, a = 0, b = −50). A video of the experiment can be
found at https://osf.io/sdk8r/?view_only=8aed2f9c6ca54d18b0456a4ce9662cd3.

6.1.4 Procedure

Procedure was the same as in Experiment 2, and the experiment again lasted
approximately 25 min.

6.1.5 Results and Discussion

In the browser–PC condition, the mean overall processing rate C across all
participants was estimated at 61.31Hz [95% HPD: 58.29, 64.24] with an SD
of 34.15 [95% HPD: 28.44, 40.53]. In the browser–mobile condition the mean
overall processing rate C across all participants was estimated at 45.27Hz [95%
HPD: 47.49, 43.09] with an SD of 27.69 [95% HPD: 24.27, 31.33]. The difference
in C between these conditions is 16.04Hz [95% HPD: 12.38, 19.81].

In the browser–PC part, the neutral mean attentional weight of the probe
across all participants was estimated at .51 [95% HPD: .49, .52] with an SD of
0.06 [95% HPD: 0.04, 0.07], the salient weight as .60 [95% HPD: .59, .61] with
an SD of 0.06 [95% HPD: 0.05, 0.08]. The probe weight of the salient stimulus
is .09 higher than that of the neutral one [95% HPD: .08, .11].

In the browser–mobile condition, the neutral mean attentional weight of the
probe across all participants was calculated as .50 [95% HPD: .49, .51] with an
SD of 0.05 [95% HPD: 0.04, 0.06], the salient one as .57 [95% HPD: .55, .58]
with an SD of 0.07 [95% HPD: 0.06, 0.08], with a difference of .07 [95% HPD:
.05, .08]. Comparing the attentional weights of the salient stimulus between the
two browser conditions, the difference is estimated at .03 [95% HPD: .02, .05].
For the split-half reliability tests, see Appendix Section A.6.

The correlation of parameters estimated in the browser–PC condition and
those from the browser–mobile condition show the same pattern. While C
strongly correlates, having a high Bayes factor, the w∗p correlation is weaker and
much less certain (see Figure 10). The weak correlation and reduced certainty
reflected in the Bayes factor is unexpected. Experiment 3 was identical to
Experiment 2, except for the color contrast used to establish salience. We further
looked into this by conducting sequence analyses that show how evidence in favor
or against the correlation accumulates when participants are iteratively added
into the analysis (see Appendix Figure 26). As Appendix Figure 26C reveals,
several participants do not change the evidence level much. Nevertheless, it
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Figure 9: Results of Experiment 3: Means for processing capacity, C, and
attentional weight of salient and nonsalient probe stimulus, w∗p, in the browser–
PC, top, and browser–mobile, bottom, conditions.

Figure 10: Results of Experiment 3: As in Experiments 1 and 2, in Experiment 3
the C estimates of the browser–PC and browser–mobile session are positively cor-
related; the w∗p values (salient probes only) show a somewhat weaker correlation;
BF = Bayes Factor.

accumulates towards strong evidence until participant 29 is added. Participant 29
has an exceptionally high w∗p in the browser–PC condition (.76) and a very low w∗p
in the browser–mobile condition (.51). A possible explanation is that rendering
one of the colors (perhaps the yellow) depended strongly on the display properties.
Since no display (neither lab nor mobile) was color calibrated, it is well possible
that the colors rendered substantially different on different devices. If this was
the case, it is noteworthy that the red–green contrasts used in the previous
experiment appears to be particularly robust (cf. the correlation in Figure 10
and the corresponding sequence analysis in 26B).

As in Experiment 2, effect sizes (see 1 are very large, and so is probability of
superiority, though they are somewhat less impressive in the wild than in the
lab.

The result of the model fit (Table 2, third row) indicates that goodness of fit

22



is reduced in the browser–mobile condition, especially for the small SOAs. Small
SOAs also show a deviation in the lab condition. Individual data and fit plots
are provided in Figure 21.

Overall, Experiment 3 confirms the pattern of results in Experiment 2. Firstly,
salience results in a substantial weight increase. The increase was smaller on an
unselected mobile device, but still in the range of expected values. Again, C is
strongly reduced when doing the experiment on a mobile device, and the mean
of 45Hz is comparably low. Effects sizes and probability of superiority are large.

7 Some comments on Experiments 1 to 3
We now turn to potential reasons for the substantial reduction of C in the
conditions with unselected (mobile) devices brought by the participants in Exper-
iments 1 to 3. In general, the discrepancy could have two origins: Participants
could indeed have a reduced C available for the task on a mobile device. They
might spend more of their processing capacity on their surrounding (which is
less distracting in a typical lab setup) and stimuli occupy smaller parts of the
visual field. This is in line with a reported reduction of C if the environment
is monitored for a change additionally to a concurrent task (Poth et al., 2014).
However, the second possible origin seems more likely: Many devices might not
be able to present the stimuli with sufficient precision. Especially the lower
frame rate of most devices could be crucial. If at short SOAs, frames are dropped
they can even be rendered as SOA zero (both targets start flickering in the
same frame). This effectively shortens the SOAs which lowers the precision of
the order judgment and ultimately C. On the other hand, lags in computation
could lengthen SOAs depending on the exact methods of time keeping in the
devices. While the participant-level plots of conditions conducted on mobile
devices generally agree with the typical data pattern and show good fits, some
indications of timing problems at the small SOAs can be seen. For instance,
among others, participant 23 of Experiment 1 shows data points clustering near
.5 at smaller SOAs. At larger SOAs the points follow the expected pattern (see
Figure 19).

Figure 11 shows a comparison of the discrepancies between lab PC and
unselected devices. For this purpose, the participant-level differences from
Experiments 1 to 3 in the estimates of the two conditions were grouped by
the device configuration that was used in the mobile conditions. After pooling
over different version numbers, 16 configurations remained. Some contain only
one or a few participants but others contained up to 27 (for the most popular
configuration “Phone iOS Safari”). The varying degrees of certainty in the
estimates are captured in the varying width of the distributions.

One insight of this analysis is that, different from what the results in Figure
9 suggest, the C estimates measured with different devices vary, and some are
smaller and others larger than the C estimates from the lab condition. While C
estimates are smaller on smartphones and laptops, they are increased in Windows
and Ubuntu laptops. The w∗p parameters from the lab and browser condition are
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Figure 11: Comparison of the differences in the C and w∗p estimates for different
devices (operating systems and browsers).

often similar. If they differ, the w∗p are smaller in the browser condition. While
it is out of scope of the present study to investigate the technical reasons for
the implementation behaving differently on the different systems, this analysis
provides a starting point for researchers who want to run similar (timing critical)
experiments on mobile devices. The mismatches not only provide hints on
where potential problems originate from (e.g. larger C: realized SOAs are too
long; smaller C: SOAs too short) but also an overview about which system
configurations can be expected “in the wild”.

To sum up Experiments 1 to 3, using mobile devices with experiments
implemented in the browser can be a useful tool. In the context of TVA-
based TOJ analysis, the overall processing rate C seems to be reduced, but
measurements in the wild correlate with those from the lab. Effects on the
attentional weights w∗p can also be detected. However, depending on the salience
manipulation, they were much smaller (Experiment 1 with orientation salience),
somewhat smaller with yellow–blue color salience (Experiment 3) or the same
as in the lab (Experiment 2 with red–green color salience). The degree to
which the lab and “wild” estimates of individuals correlated followed the same
pattern, with the strongest correlation for the red–green color salience. In many
contexts, smaller effects and weaker correlations might be acceptable. However,
researchers who set out for especially precise measurements should optimize
experiment implementations for the expected target devices (e.g., to guarantee
reliable timing) and—if their research question allows—turn to reliable attention
manipulations, such as the red–green color contrast.

While, overall, the three experiments show that there are differences in how
well effects can be measured in the wild compared to typical lab conditions,
the experiments also show a reassuring and sometimes even very high precision
of measurement in the wild. The assessment of model fit showed that data
recorded outside the lab deviates more from the predictions of the fitted model
than data from the lab. In both lab and “wild” recordings the fit is worse at
smaller SOAs. The reason for this is likely two-fold: central regions of TOJ
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psychometric functions might reflect processes not included in the current model
(Tünnermann & Scharlau, 2018b, cf.). Moreover, “in the wild” such SOAs are
more severely affected by timing problems that can be expected on many devices.
However, visual assessments of the model fit (Appendix Figure A.1–A.3) indicate
that even though these deviations are statistically detected, they do not seem to
interfere with with the general quality of the fit and appear not relevant for the
practical estimation of TVA parameters. (From a theoretical point of view, they
indicate where modelers could start to improve models in future work).

8 Experiment 4
The first three experiments demonstrated that data collection outside the lab
can reproduce the typical result patterns and the expected differences between
experimental and control condition. In the fourth experiment we embed the
TOJ task in a game environment. Computer games keep players interested even
though the actual task can be very repetitive. The present experiment frames a
salience experiment as a game. Results are compared to a control experiment in
which the game elements have been removed. The dynamic movements of the
game stimuli and their changing retinal size and position introduce additional
degrees of freedom which are typically excluded in lab TOJs. While this can be
seen as further loss of control over the stimulation, the game-like character of
the experiment could help to keep the observer’s motivation high. As explained
earlier, it is not the scope of the present study to disentangle such influences.
However, we would like to point out that influences can be both disadvantageous
and beneficial and hence we do not necessarily expect a degradation in data
quality when moving towards more game-like experiments.

The game was established as a race in which the participant, or player, con-
trolled a dragonfly that moved forward with speed depending on the judgments.
Participants used a computer mouse to steer the dragonfly through a tunnel.
The dragonfly’s speed was controlled by the game. Our focus was on keeping
participants engaged throughout the experiment. To this end, their primary
task was to reach the end of the tunnel as quickly as possible and before another
computer-controlled dragonfly.

In regular intervals, players encountered walls in the tunnel with a grid of
holes representing the stimuli. For the TOJ task, two slightly larger holes (a
nonsalient reference and a salient probe) flickered. If the player flew through
the hole that flickered second, they received a short boost, giving them an
advantage over the other dragonfly. If a hole was missed, the dragonfly crashed
into and thus shattered a piece of the wall, resulting in a loss of momentum.
The player’s actions, e.g., lateral motion or correct TOJ were accompanied by
game-typical sounds. The sound of moving wings reacting to the dragonfly’s
lateral acceleration, as well as chimes sounding when a player flew through a
target hole, or the sound of crumbling bricks when they crashed into a wall,
all serve the purpose to enhance immersion and to give the player immediate
feedback for their actions. In later levels, players were increasingly challenged
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by stronger wind gusts coming from random horizontal and vertical directions,
which they had to counteract.

The control experiment showed the same walls and required the judgment
without the dragonfly race and without the sounds. Because probe and reference
never occupied the same quadrant of the display, participants of the control
experiment indicated the quadrant containing the stimulus that flickered second
by a keypress (the four sectors were mapped on numpad keys).

Our hypotheses were that the overall visual processing capacity for the game
would be reduced in comparison to the standard experiment, but still in the
range of typical visual capacity of healthy adults (20Hz–60Hz, see, e.g., Wiegand
et al., 2014). We furthermore expected an effect of salience on the attentional
weights in both conditions with no specific expectations as to its exact value
(a stronger attentional weight in the game would, however, be odd in so far as
salience experiments are particularly designed so that the salience manipulations
should exhibit maximal effectiveness).

8.1 Method
8.1.1 Participants

There were 31 participants (15 male and 16 female; Mage = 22.41, range 18–35)
in the game and 31 participants (18 male and 13 female; Mage = 23.09, range
18–35) in the control experiment. All participants gave informed written consent,
completed one session, reported normal or corrected-to-normal visual acuity and
received course credit or a payment of 8 Euro per hour.

8.1.2 Apparatus

The experiment was conducted on a Microsoft Windows 10 PC with dedicated
graphics card and a Master Pro512 22 inches (40.4 cm× 30.3 cm) CRT monitor.
A resolution of 1024× 768 pixels was used with 32-bit colors and a refresh rate
of 100Hz. The viewing distance was 50 cm. Input devices were an optical mouse
(game) and a keyboard (control experiment). The game was implemented using
the Unreal game engine, the control experiment was implemented with PsychoPy
(Peirce, 2007).

8.1.3 Stimuli and Design

In this experiment, gaming was realized as a between-participants factor, salience
as a within-participants factor.

Each wall consisted of a circular grid of stimuli (see Figure 12 for screenshots)
with 9 holes in the horizontal and vertical direction. (The outermost rows and
columns had 5 holes, those next to them 7 holes in order to fit them into the
circular tunnel.) Two holes in each wall were marked as targets by being slightly
but visibly larger than the others. In the experimental condition, the hole for
the probe stimulus was rotated by 90◦ in relation to the other stimuli. The
SOA values were 0ms, ±50ms, ±100ms, and ±150ms. For each trial, the probe
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Figure 12: Example stimulus display of Experiment 4. Game on the left (the
camera followed the small dragonfly in the center), control experiment on the
right. The control experiment had a centered fixation mark preceding the display.

and the reference stimulus appeared in random but different quadrants of the
grid. Each participant completed 50 training trials and afterwards another
10 levels with 50 trials each. A video of the experiment can be found at
https://osf.io/sdk8r/?view_only=8aed2f9c6ca54d18b0456a4ce9662cd3.

8.1.4 Procedure

The procedure of the TOJ is sketched in Figure 1. In order to ensure that a
TOJ was made and participants did not simply choose the first flicker, they had
to choose the hole that flickered second. In the game, the judgment had to be
made by steering the dragonfly through the hole that flickered second. There
was no fixation mark. Participants did not receive any instructions regarding
eye movements so that they were free to solve the task or play the game as they
see fit. Like in the description of Experiment 1, it is worth noting that moving
the eyes while the jittered flicker occurs likely results in not seeing the transitory
change. Still, we cannot provide evidence for or against a possible influence of
eye movements on the results. In the control experiment, participants indicated
their judgment by choosing a quadrant of the display by a key press.

8.2 Results and Discussion
The game allowed to steer the dragonfly so that it could pass the wall at neither
the reference nor the probe position. These trials were not evaluated because
they do not correspond to a clear judgment. This was the case in less than 1.5%
of the trials.

In the game, the mean overall processing rate C across all participants
was estimated at 55.49Hz [95% HPD: 52.97, 58.04] with an SD of 26.15 [95%
HPD: 23.14, 29.04]. The mean attentional probe w∗p across all participants was
estimated at .53 [95% HPD: .52, .54] with an SD of 0.05 [95% HPD: 0.05, 0.06].
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Figure 13: Results of Experiment 4: Game and control experiment means for
processing capacity, C, and attentional weight of salient probe stimulus, w∗p.

In the control experiment, the mean overall processing rate C across all
participants was estimated at 77.97Hz [95% HPD: 73.32, 82.79] with an SD
of 44.35 [95% HPD: 36.42, 52.69]. The mean attentional probe w∗p across all
participants was estimated at .59 [95% HPD: .58, .60] with an SD of 0.06 [95%
HPD: 0.05, 0.07].

Figure 13 shows the posterior estimates of both parameters for the game and
the control experiment. In the game, the attentional weight is reduced. Also, the
visual processing speed is diminished in comparison to the control experiment.
Individual fits are shown in the Appendix Figure 22 for the game and Appendix
Figure 23 for the control experiment.The split-half reliability tests are reported
in Appendix Section A.6.

Both findings are in line with a TVA-based explanation. The game required
a further task while observing the flicker. A detrimental effect of a second task
on visual processing capacity has been shown in a TVA-based study before (Poth
et al., 2014). This makes a reduced visual capacity plausible while an increase
would have been a problem for a TVA-based explanation. Also, the reduced
attentional weight can be explained in TVA by the necessity to observe the
position of the dragonfly as well as both flicker locations.

The pattern of model fits shown in Table 2 (fourth row) deviates from
Experiments 1–3 in a number of aspects: First, the p-values of the lab condition
are lower than for the game condition, indicating that the model provides a better
fit for the “in the wild” (game) condition. However, the goodness-of-fit measure
is heavily affected by the fact that in this experiment, the SOAs were repeated
many times ( 80 repetitions per SOA)—the high power per SOA requires highest
precision of the fit and even slight deviations are penalized harshly (this seems
akin to any significant test yielding significance if N is chosen high enough).
Moreover, the steep psychometric functions lead to many observations close
to the convergence levels where little variance is allowed. The small p-values
might reflect that there are subtle influences on the course of the psychometric
function which are not included in the present model. Taking the participant-
level plots (Appendix Figure 23 and 22) into account, these fluctuations are
clearly below what is relevant for the current study. However, again the model
check can inform future modeling. For instance, lapse parameters (Tünnermann
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& Scharlau, 2018a, cf.) could account for occasional “random” response errors,
to deal with the overly strict requirement to meet the convergence axes.

For practical reasons, this experiment was conducted as a between-subjects
design. While this might reduce statistical power, it does not introduce a system-
atic bias. Given the sufficiently large sample size (our earlier experiments of this
study and those published elsewhere show that sufficiently precise parameter
estimates can be obtained with 30 participants) and the presence of a salience
effect we believe the outcomes are valid.

Summing up, assessing attention with TVA parameters works comparably
well in the present game-like situation. The quantitative deviation is in a direction
that is consistent with a TVA-based explanation of the additional attentional
requirements during the game. Turning the logic of comparison upside-down—
comparing not to justify the means but comparing to quantify the difference
of the attentional requirements—the TVA-based approach potentially allows a
quantitative estimate of the increase in attentional requirements between game
and control experiment. The following experiment is designed to corroborate
these findings with stronger gaming features.

9 Experiment 5
Experiment 5 used the same logic as Experiment 4. Given that Experiment 4
confirmed that the typical result pattern can be found outside the the restricted
lab paradigm in game-like scenarios, we did not run a typical lab version of
the task as a control. Instead we used the available resources to add further
gaming features and explore the influence of varied task difficulty by varying a
gaming factor (speed) and experimental timing (the SOA). Participants steered
a spaceship through a tunnel. Again, there were grids in this tunnel with holes,
two of which were marked as targets by their size and flickered as the spaceship
approached the grid (see Figure 14 and the video available at https://osf.io/sdk8r/
?view_only=8aed2f9c6ca54d18b0456a4ce9662cd3). The participants performed
TOJs by choosing the hole that flickered second and steering their spaceship
through it. In one condition, flying difficulty was increased when the participant
performed well and decreased when they made mistakes. This factor, adaptive
flying difficulty, was crossed with another difficulty factor, SOA timing, which
we studied exploratively for reasons explained in the next paragraphs.

In an unpublished experiment with a similar game (Briese, 2019), the C
values we estimated were very large. This finding is remarkable since in such
dynamical situations, we cannot assess overall C because the participants have
to distribute some of their resources to other parts of the game such as steering
or monitoring their scores. So if equal capacity is assumed between game and
experiment, a smaller C would have been plausible because a part of the fixed
C would be applied to the game elements.

Two possible (post-hoc) explanations may account for the large Cs. Eleven
of the twelve participants were experienced gamers. They might have acquired
processing routines that enlarge C (or have had large visual processing capacity in
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the beginning and therefore turned into heavy gamers). The other explanation—
which is more interesting in the context of the present paper—is that the
experiment had unusually small SOAs to compensate for the experience of the
gamers. The increased difficulty that goes along with small SOAs might have
pushed the players into strategic changes that showed up in a large C.

There are not many studies on what influences TVA’s C parameter (ex-
ceptions are clinical and psychopharmacological studies, see, e.g., Habekost,
2015; Vangkilde et al., 2011). Two gaming studies indicate the possibility that
gaming experience may increase C in some conditions (Schubert et al., 2015;
Wilms et al., 2013). Studies of temporal expectancy (Vangkilde et al., 2012)
and alertness (Haupt et al., 2015; Matthias et al., 2010; Petersen et al., 2017)
provide evidence that timing is an important factor. Performing a concurrent
tasks while monitoring the environment for events reduces the visual processing
capacity (Poth et al., 2014). A theoretical explanation how external factors may
affect C is offered by the three components expectancy, subjective importance,
and general level of alertness (Bundesen, Vangkilde, & Habekost, 2015).

Because temporal factors are likely to affect C, we compared two blocked
conditions, one with typical SOAs and one with slightly smaller ones. Keep
in mind, however, that we still only measure a part of C; as the experimental
manipulations could also affect the distribution of C over subtasks, we should be
circumspect with all conclusions. Note also that we are not primarily interested
in the influence of gaming experience on attention but study it only as a possible
reason for the high C values reported by Briese (2019).

9.1 Method
9.1.1 Participants

Thirty persons (18 male and 12 female; Mage = 24.77, range 20–54) participated.
Twenty-four participants were students or members of Paderborn University.
All participants gave informed written consent, completed one session, reported
normal or corrected-to-normal visual acuity and received course credit or a
payment of 8 Euro per hour. On average, the participants’ reports on gaming
result in a mean of 9.2 hours per week (range 0–42 hours, SD = 9.5 hours, median
= 6 hours). Fifteen participants reported to prefer action games, 8 reported to
prefer logic games, and the 7 who did not play computer games did not indicate
a preference.

9.1.2 Apparatus

Apparatus was the same as in Experiment 4.

9.1.3 Stimuli and Design

Two experimental factors were varied blockwise. SOA size s ms was either large
(s ∈ {0 ,±50 ,±100 }) or small (s ∈ {0 ,±30 ,±70 }). Gamification was varied by
using adaptive spaceship speed v units/s ∈ [1000, 5000] in the adaptive conditions
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Figure 14: A Example of a stimulus display of Experiment 5. The spaceship
is a small reddish object in the lower left. During the experiment its color is
set to white. B illustrates the possible probe and reference locations in gray.
Locations that always contained background elements are shown in black.

(vstart :=1000) and a constant speed v := 1000 units/s in the nonadaptive
conditions. In each of the four blocks, the SOAs were repeated 50 times, which
resulted in 250 trials per pass and 1000 in total. Block order was varied between
participants.

Comparable to Experiment 4, each wall consisted of a circular grid of stimuli
with 9 holes in the horizontal and vertical direction (except for the outer rows
and columns, as in Experiment 4), see Figure 14B. The background elements
were either red (RGB: #cf4b22) or blue (RGB: #008fcb) in a trial. The reference
stimulus always had the same color as the background elements, whereas the
probe always had the other color. Both targets were slightly larger than the
background elements. Probe and reference were always in different quadrants; the
allocation and exact position were randomly chosen among the allowed locations.
An example is shown in Figure 14A. After the wall had been presented for 150
ms (±20ms) plus a jitter (j ms ∈ [10, 100]), probe and reference flickered briefly
by offsetting and onsetting again after 80 ms. Calm pieces of jazz and lounge
were used as background music, also known as “elevator music.”

In the nonadaptive speed condition, the spaceship flew at a constant speed
of v := 1000 units/s. In the adaptive speed condition, spaceship speed was
in the range of 1000–5000 units/s and depended on the performance of the
participants. After each trial, speed could be increased by 20 or 45 units/s or
decreased by 100 or 50 units/s, depending on aggregated performance. The
distance between the walls was dynamically coupled to the speed of the spaceship
so that adaptive speed affected only the time the participant had to make their
judgment. A video of the experiment can be found at https://osf.io/sdk8r/
?view_only=8aed2f9c6ca54d18b0456a4ce9662cd3.
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9.1.4 Procedure

The task was explained to the participants in the main menu where the spaceship
flew through the walls on its own, illustrating the game. An example wall was
shown for one training trial. The experiment started without any additional
training. Like in Experiment 4, participants did not receive any instructions
regarding eye movements so that they were free to play the game as they see fit.

The judgment had to be made by steering the spaceship with the mouse
through the appropriate hole. As in Experiment 4, the correct choice was the
hole that flickered second. Audio feedback was given if the participant hit one
of the target holes. One block took 6 to 8 minutes. The complete experiment
lasted approximately 35 min.

9.2 Results and Discussion
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Figure 15: Results of Experiment 5: Means for processing capacity, C, and
attentional weight of salient probe stimulus, w∗p in the four conditions.

The C values in the adaptive conditions were smaller than those in the
nonadaptive conditions (adaptive, large SOAs: 67.39Hz [95% HPD: 61.31,
73.60] with an SD of 43.67 [95% HPD: 32.90, 54.51; adaptive, small SOAs:
61.70Hz [95% HPD: 57.08, 66.51] with an SD of 31.82 [95% HPD: 25.12, 39.61;
nonadaptive, large SOAs: 117.70Hz [95% HPD: 109.42, 126.16] with an SD of
65.17 [95% HPD: 57.34, 73.13; nonadaptive, small SOAs: 95.40Hz [95% HPD:
88.79, 102.17] with an SD of 44.59 [95% HPD: 36.80, 52.70; see Figure 15, left
column). The difference between the adaptive and the nonadaptive conditions
is 50.31Hz [95% HPD: 60.90, 40.20] between the large SOA conditions and
33.69Hz [95% HPD: 25.46, 41.79] between the small SOA conditions. Both
differences are large and the HPDs exclude zero. This finding accords well
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with the idea that in the adaptive condition, participants had to spend more of
their capacity on strategic changes. The individual fits are shown in Appendix
Figure 24 and the split-half reliability tests are reported in Appendix Section A.6.

The experimental factor SOA size had an influence in the nonadaptive
condition with C being larger with larger SOAs, that is, less difficult trials. The
difference is 22.30Hz [95% HPD: 33.24, 11.78] In the adaptive condition, the
distributions of C overlap strongly and the difference is close to zero, −0.01Hz
[95% HPD: -0.03, 0.01] (see Figure 15).

In all conditions, w∗p deviates from a neutral distribution of .5 (adaptive,
large SOAs: .70 [95% HPD: .68, .71] with an SD of 0.09 [95% HPD: 0.08, 0.11];
adaptive, small SOAs: .70 [95% HPD: .69, .71] with an SD of 0.09 [95% HPD:
0.08, 0.10]; nonadaptive, large SOAs: .64 [95% HPD: .63, .66] with an SD of
0.11 [95% HPD: 0.09, 0.12]; nonadaptive, small SOAs: .68 [95% HPD: .67, .70]
with an SD of 0.10 [95% HPD: 0.08, 0.11]. This means, firstly, that the effect of
salience is present in all attentional weights. Secondly, the weight values of .64 to
.7 are comparably large. Similarly large weights have been reported by Krüger
et al. (2016). Thirdly, w∗p deviates stronger from .5 the less overall capacity
there is. As the weight is a relative value, one explanation might be that with
large C, there is less competition between the two targets. This idea is, however,
speculative.

Cs in the nonadaptive condition were large, replicating the finding of Briese
(2019), but many of our participants cannot be regarded as heavy gamers. To
exploratively test for the influence of gaming experience, we calculated Pearson
correlation coefficients between self-reported hours of gaming per week and the
mean of the participant’s C distribution for all four conditions with JASP (JASP
Team, 2019). Interestingly, there was a positive correlation in both nonadaptive
conditions (small SOAs: ρ = .34 [95% HPD: .04, .6]; large SOAs: ρ = .43
[95% HPD: .09, .66]). This was absent in the adaptive trials (small SOAs:
ρ = -.12 [95% HPD: .24, -.44]; large SOAs: ρ = -.02 [95% HPD: .33, -.36]).
Testing for a positive correlation revealed a Bayes factor of BF+0 = 2.1 and
BF+0 = 6.0 for the small and large nonadaptive SOAs condition, respectively.
The adaptive conditions with small SOAs (BF+0 = 0.1) and with large SOAs
(BF+0 = 0.2) showed comparable evidence in the opposite direction (indicated
by a Bayes factors smaller than 1) for the null hypothesis. These results point
in the same direction as our explanation, but the Bayes factors around 4 show
that the evidence is moderate (BF ≥ 3) rather than strong (BF ≥ 10; Lee &
Wagenmakers, 2014). It seems that all persons were pushed towards lower C
values by adaptive speed, but that this was more pronounced for the ones with
higher gaming experience, see Figure 16. If this description is correct, we can
conclude that the high overall C values are indeed partly driven by the gamers,
but that these participants cannot utilize their advantage under typical (difficult)
gaming conditions. Note however that the influence of gaming experience on
attention parameters is beyond the scope of the present paper.

To sum up, Experiment 5 again showed that, within the TOJ-TVA paradigm,
C and w can be assessed in gaming tasks that are less artificial to participants
and possibly less tedious than the standard psychological experiments. The
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Figure 16: Results of Experiment 5: Scatter plots of self-reported hours of
gaming per week and the mean of participants’ C estimates per condition; BF
= Bayes Factor.

experiment also shows that there might be problems in explaining the parameter
values. One problem are the large C values for which there is no ready explana-
tion and the apparently complementary pattern of C and w that is somewhat
suspicious with respect to the assumed independence of C and w.

10 Experiment 6
Up to here, all experiments kept participants seated in an office chair in front of
a PC or other device to perform the task with button presses or touch responses.
In Experiment 6, we move one step further into the wild by putting participants
in a physically more active situation: they had to sit on a bicycle and pedal
through a virtual traffic scenario (cf. Heinovski et al., 2019, for technical details
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Figure 17: A Setup of the virtual cycling environment as it was used in Experi-
ment 6. B Screenshot of one training trial. The probe stimulus (orange pylon)
and the reference stimulus (one of the gray pylons) flickered and the cyclists had
to collect the one they perceived as flickering second.

on the simulation). Recently, we reported TOJ experiments performed in this
setting (Stratmann et al., 2019), which we now extend by introducing a salience
manipulation similar to the other experiments reported in the present article.

Participants steered the bicyle through a simple, grid-shaped street scenario.
The path they had to follow was indicated by street signs at the intersections. At
the intersections, there was also car traffic, generating additional (and rather re-
alistic) attentional load. The TOJ was integrated as follows: At regular intervals,
hovering diamond-shaped objects appeared above the street and flickered. The
participants had to steer through the diamond that flickered first. Collecting the
correct diamond was rewarded by adding points to the participants’ score, and
collisions with cars were punished by subtracting points. As an experimental
factor, traffic density was varied in the sections between junctions. Density was
either low (no cars) or high (3.6 cars on average). The results indicated that the
cycling TOJ task can be used to measure TVA’s capacity parameter C: With
approximately 69Hz, processing capacity was higher in the low traffic condition
than in the high traffic condition where it was estimated at 58Hz. The values
are plausible in terms of overall capacity, and the difference accords with studies
that reported an influence of traffic density on mental workload (Strayer et al.,
2003; Vlakveld et al., 2015).

In the present study, we extend the experiment with a salience manipulation
which we expect to impact the relative weight w∗p. To that aim, the diamonds
were exchanged for highway cones, one of which we made more salient by giving it
orange-colored instead of gray stripes. We assume that because of the increased
salience, more capacity is assigned to this cone, indicated by a larger w∗p. Overall
processing capacity is expected to stay the same in both conditions. Traffic
density was similar to the “high” condition of Stratmann et al., 2019.

We made further changes to the original design that were not assumed to
affect the results: There were three cones, two of which flickered; the third one
was never relevant. In accordance with the preceding experiments, but different
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from the earlier study, they had to drive through the cone that flickered second.

10.1 Method
10.1.1 Participants

Thirty persons (21 male and 9 female; Mage = 25.23, range 20–35) participated.
With the exception of one, all participants were students or members of Paderborn
University. All participants gave informed written consent, completed one session,
reported normal or corrected-to-normal visual acuity and received course credit
or a payment of 8 euros per hour.

10.1.2 Apparatus

As shown in Figure 17A, we used the same hardware and simulation frame-
work as in our previous virtual cycling experiment (Stratmann et al., 2019).
Participants sat on a bicycle which was mounted on a bicycle stand to keep
the bike stationary and to let the rear wheel rotate with some resistance. The
visualization component was shown at a distance of 1.5m from the bicycle handle
on a triple monitor setup consisting of three 24′′ 1920× 1200 monitors with a
60Hz refresh rate.

10.1.3 Stimuli

Two small red bumps on the street marked the beginning of each trial. When
participants navigated centrally through the bumps, three cones appeared at a
distance of 4.5m, at least two of them gray-striped (nonsalient) and, in half of
the trials, one orange with gray stripes (salient; see Figure 17B for a screenshot
of the stimuli). The three 0.93m tall cones were separated by 0.5m and two of
them flickered in an interval defined by the SOA. The SOA values were 0ms,
±16.7ms, ±33.3ms, ±50ms, ±66.7ms, and ±83.3ms. Trials were repeated 30
times for an SOA of 0, and 28, 26, 20, 16, and 8 times respectively for the other
positive or negative SOA and for each condition (one salient stimulus or none).
This results in an overall number of 452 trials split across two blocks, i.e., two
runs through a cycling parcours. Because the length of each parcours is constant
with 281 pairs of red bumps each marking a trial, participants typically collected
more trial repetitions. This acted as a useful buffer to allow for repeating
trials in which the cyclist missed collecting a cone, for example. Traffic was
dynamically generated for the next intersection as soon as a participant entered
a new 15m long road segment. A video of the experiment can be found at
https://osf.io/sdk8r/?view_only=8aed2f9c6ca54d18b0456a4ce9662cd3.

10.1.4 Procedure

Participants cycled through the parcours. At each crossroads, a sign indicated
which direction to take. In each street section between two crossroads, three
pairs of bumps each indicated the beginning of a trial. Immediately after cycling
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through the bumps, the flickering cones appeared and the cyclist had to quickly
steer though the cone that had flickered second. Again, participants did not
receive any instructions regarding eye movements. A short training of 10 trials
with feedback in the form of awarded points shown on the virtual bike computer
allowed familiarization with the task. Additionally, after each of 6 levels and
after the training, participants were shown a pause screen with both the collected
points and the maximum points they could have reached. The experiment lasted
approximately 60min.

10.2 Results and Discussion
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Figure 18: Results of Experiment 6: Means for processing capacity, C, and
attentional weight of salient probe w∗p in the experimental condition (orange
cone, orange curve) and in the neutral condition (all-gray cones, gray curve).

Figure 18 shows the posterior estimates for the mean overall processing rate
C and the mean attentional probe weight w∗p across all participants. C was
estimated at 62.5Hz [95% HPD: 59.9Hz, 65.1Hz] with an SD of 33Hz [95%
HPD: 29.9Hz, 37.5Hz]. In the salient condition (orange cone), w∗p was estimated
at .48 [95% HPD: .47, .494] with an SD of 0.06 [95% HPD: 0.048, 0.07]. In the
nonsalient condition, w∗p was estimated at .51 [95% HPD: .497, .522] with an
SD of 0.05 [95% HPD: 0.035, 0.056]. Individual fits are shown in the Appendix
Figure 25 and the split-half reliability tests are reported in Appendix Section A.6.

Contrary to our expectation, we measured a lower attentional weight on
the probe stimulus if it was colored bright orange instead of gray. Possibly the
task of collecting the second cone that flickered rather than the first introduces
complexity for participants that would warrant a longer training session. Fur-
thermore, it is possible that the third (nonsalient) cone, of which we initially
thought that it would make no difference, inclined the participants to spread their
attention more equally over the three objects. As they needed to detect which
of the gray cones was the target, they may have dedicated more attention to the
gray than the orange cone. Another possibility that has to be tested in further
experiments is that the cycling task requires more capacity, e.g., for reading the
signs or detecting and avoiding other cars, reducing possible differences between
attentional weights on the cones.
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11 General Discussion
The present approach deviates from what experimental psychologists typically
do: creating highly controlled environments to test hypotheses and develop
theories to understand behavior and mind. This deviation may strike the
reader as a particularly untimely approach as recent replication attempts (e.g.,
Open Science Collaboration, 2015) revealed substantial problems even with such
strictly controlled experiments. However, we have a particular justification for
this attempt that relies on a simple task, TOJ, in combination with a formal
theory of attention, TVA.

TVA is based on the identification of common mechanisms of attention that
explain results from experiments on selection and recognition described in the
formal language of mathematics. The formal specification allows for severe
testing. During this testing—in highly controlled environments—researchers
reported good fits between theoretical prediction and observed data (beginning
with Shibuya & Bundesen, 1988), and TVA has been shown to produce a reliable
(Habekost et al., 2014) and meaningful formal (Logan, 2004) description of a
person’s attention.

In the present work, we have shown that TVA can also be used to investigate
and describe attention during activities much less restricted than the experimental
designs commonly used with TVA. Theoretically, this goal should be attainable
because TVA and the formal TOJ model provide a basis for discerning expected
from unexpected results. Practically, this goal has been promising because of the
simplicity of the TOJ. It is simpler than the letter report design commonly used
with TVA, can be done while being engaged in a second task and allows to use
almost any visual stimulus material instead of being restricted to overlearned
stimuli such as letters — for instance the holes in a grid or diamonds dangling
in the air used in Experiments 4 to 6.

One way to characterize the presented experiments is as a game: We asked
participants to engage in an activity that was not explicitly tailored for the
measurement of attention but included rules that contained a TOJ. Degree of
control was relaxed depending on the experiment: pursuing a second task while
partaking in a TOJ-based attention measurement (riding a bicycle, playing a
racing game), or allowing the participants to use their own device while not
being isolated in an experimental booth. This is clearly not “in the wild”, but an
important step towards a measurement of attention in a real-life activity.

The estimated TVA parameters are within a reasonable range: The over-
all visual processing capacity, C, is comparable to the range of C estimates
for healthy adults obtained with non-TOJ based experiments (Wiegand et al.,
2014). In general, gaming reduces available processing capacity (Experiment 4),
especially when the task gets rather difficult (adaptive speed condition in Exper-
iment 5), although high capacity was also possible (nonadaptive speed condition
in Experiment 5). The reduction is in accordance with TVA-based explanations.
From a theoretical point of view, the C value does not have to be the same
for an individual during different tasks because it depends on variable factors
such as the sensory evidence of a stimulus belonging to a certain category. More
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importantly, attention may draw processing capacity away from the stimuli and
towards game-relevant locations and features. There are attempts within the
TVA community towards more fine-grained models in which location components
are included (Nordfang et al., 2018), but so far it remains an open question
whether these could be set up in practice to capture all potentially relevant
influences, even for a somewhat controlled environment like a computer-based
3D simulation.

The attentional weights could in most experiments be manipulated with the
same ease and similar results as in laboratory settings. The weights of salient
stimuli are close to the values reported in previous studies (Krüger et al., 2016,
2017) where the task and the salience manipulation on multi-element displays
were very similar.

It is worth noting that it is not clear how eye movements may have affected
the attentional weights. In Experiment 1-3, participants were instructed to
fixate a central mark and there was no obvious advantage of moving the eyes.
Eye movements could even be detrimental because the other target would be
shifted into the periphery and unlucky timing might cause saccadic suppression
of flicker events. Thus, we believe there was little incentive for performing eye
movements. By contrast, eye movements were particularly likely in Experiments
4–6 where observers acted in more natural scenes. It remains unclear how
eye-movements interact with the TVA-based estimates. There is as yet little
theoretical and empirical research on this topic (some initial perspectives are
provided by Schneider, 2013). In general, the fundamental mechanisms of
TVA are based on objects and their features. Thus, it appears reasonable that
these would be somewhat invariant with respect to eye movements. However,
more recent research showed that attentional weights include a location-specific
component (Nordfang et al., 2018) for which this would not be case. In future
work, mobile eye tracking combined with experiments similar to the ones reported
in this study might identify the relationship between TVA components and eye
movements in dynamic scenes.

Even though not incompatible with TVA, some results remain unexplained.
For instance, the high values for visual processing capacity in the nonadaptive
conditions of Experiment 5 appear odd when compared to the values of the similar
game in Experiment 4. Although there are possible TVA-based explanations
(for instance the amount of sensory evidence that the colored stimuli provided)
these are as yet not tested.

The reversed results in the cycling scenario, where we found an attentional
weight bias in favor for the nonsalient target, are an example for a finding that
is unexpected in the light of similar but lab-based experiments. Again, a TVA-
based explanation is possible, but not tested. The weight distribution might have
been caused by the fact that there were two possible nonsalient cones without
any advance information about which one was the target so that the drivers
distributed their attention more equally across the three important objects or
even directed more attention to nonsalient cones to discern as quickly as possible
which of the two is task relevant. The dynamic environment in such an interactive
driving simulation contains many differences to typical lab experiments (many of
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them would also be found in the real world). For instance, targets are visible for
longer times and their projection moves across the visual field with their apparent
size increasing. The changes over time invite participants to dynamically and
possibly strategically direct their attention across the scene with more goals
than just performing the TOJs. Identifying possible scenarios of what might
be going on can lead to new hypotheses which then can be tested under lab
conditions, leading to findings. It is likely that this uncovers phenomena that
are easily missed if one only conducts experiments under strict control. In this
way, experiments “in the wild” can help cumulative theory advancements and
the generalizability of phenomena.

In the first three experiments we directly compared experimental conditions
with lesser and higher degrees of experimental control which otherwise were
identical in design, procedure and participants. We found that the model-based
attention components were affected by experimenting “in the wild” in different
forms which has some implications on how such measurements might be used by
researchers. Allowing people to do experiments on any available mobile device
biases the estimates of capacity towards lower values than found in similar but
lab-based tasks because C depends on factors such as the visual evidence, which
can be different in the lest restrictive settings. For instance, under normal light
conditions, the effective stimulus contrast could be reduced. Moreover, at the
variable viewing distance, retinal size of the stimuli could be reduced. Concerning
w∗p, some salience manipulations seem to transfer robustly into “the wild” when
used in the flicker-TOJ-task. Oriented line segments however seem unsuited.
The mean effect of salience is at best small and the expected correlation between
lab and “wild” results is missing. The color salience manipulation worked fine
outside of the lab, especially for a red–green contrast). Perhaps salience from
local orientation contrasts relies more on the exact retinal size of the elements.
Receptive fields dealing with local orientation might deal with the image statistics
in a more narrow range that occurs in typical natural textures whereas relevant
color contrasts can appear at a wide range of scales.

To sum up our findings, C is a reliable index of processing speed. The
estimates from lab experiments correlated with those from less restrictive ex-
periments, which were lower but in a reasonable range. Correlations between
the salience-enhanced attentional weight w∗p from the same people in the two
conditions varied from nonexistent to large, apparently depending on the overall
strength of the salience manipulation. According to our findings, it is possible
to test scientific hypotheses in this way, but it might be difficult to get reliable
w∗p estimates for a person when rather subtle attention manipulations are used.
The split-half reliability tests in Appendix Section A.6 show similar reliability
for “in the wild” and lab conditions, although the reliability for the w∗p estimates
(salience condition) was overall low. For researchers interested in precise w∗p
estimates it is advisable to use more trials than we have.

A TOJ-based TVA assessment of attentional parameters looks promising
enough for situations with relaxed experimental control, be it less control of
the apparatus or more complex and dynamic visual scenes. Moreover, bodily
activities (riding a bicycle), or engaging in an activity which is not directly
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related to the TOJs does not lead to very different outcomes compared to usual
lab-based research.

As mentioned in the passing in the Introduction, one further benefit of
the method presented here is that it may be easily used in applied research
and for questions where real-life adherence is of crucial importance. To give
an example, TVA-based measures can be used to pinpoint attention-related
deficits in clinical populations (for a review see Habekost, 2015) or in aging
(e.g. Habekost et al., 2013; Künstler et al., 2018). Laboratory TVA tasks
often show a decline of TVA parameters with age. Despite TVAs specificity in
assessing attention-related parameters, some studies have shown that this typical
laboratory assessment may underestimate the cognitive capacities of, e.g., elderly
persons (e.g. Wiegand & Wolfe, 2020). Using a more realistic hybrid search
task, Wiegand and Wolfe (2020) found no evidence for an age-related decline,
except for overall response time. One possible explanation of these contradictory
findings is that performance decline is overestimated in laboratory tasks because
older adults may be little trained to presence their cognitive functions in real-
world than tasks. The same problem impairs assessment in clinical populations.
More generally, attentional abilities may generally be underestimated in the
repetitive and barely motivating assessment of TVA parameters, and it is likely
that there are groups of participants (for instance children) who suffer from this
more than others. The approach we followed in the present paper may help to
establish more realistic tasks conditions that would allow to investigate these
possibilities and it would complement successful approaches to test TVA in more
realistic scenarios by using, for instance, head-mounted displays (Foerster et al.,
2019).

11.1 Conclusion and Outlook
The present article pushed toward the application of simple psychophysical tasks
followed by model-based analysis in more natural, real-life scenarios—“the wild”.
We have used classical paradigms with less experimental control (Experiments 1
to 3) and even game-like scenarios to frame TOJs (Experiments 4 to 6). The
results confirm that research conducted in this manner—using a simple task and
a fine-grained model—is similarly informative as typical lab-based experiments
and offers new possibilities. On the one hand, research conducted in this manner
could make use of more diverse and more representative participant samples. A
mobile phone or tablet can be carried into a café or a street market as easily
as a questionnaire. On the other hand, research with children (and possibly
also adults) can highly benefit from the game-like character that keeps the task
interesting and participants motivated. Moreover, including TOJs in driving
simulations provides a semi-naturalistic task. Researchers can investigate how
different user interfaces or various environmental factors (e.g., the traffic in the
scene or a distracting person in the passenger seat) interfere with attentional
resources and guidance. Moreover, in addition to the binary judgments, rich
data beyond the usual key presses, such as driving trajectories or other action
related components, can be recorded and analyzed.
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Arguably, we have not arrived in the real wild yet. Which challenges must be
met to extend this work toward even more natural scenarios, possibly embedded
in the real world? Because the TOJ task is very simple, it seems possible to
integrate TOJ stimulation in the real world. A step forward could be achieved
by augmented reality glasses, which display TOJ events with probe and reference
stimuli on top of the natural visual scene, probing attention at certain locations
of interest. It also might be possible to glue wireless battery-driven LEDs to
many objects of interest (vehicles, tools, paintings). The judgment could be
indicated by button presses, gestures, or maybe verbally.

A main challenge is to record a sufficient number of TOJ trials under such
conditions. In the game-like scenarios we used in this article, the task repeatedly
occurred in rather close succession. This would not only be difficult to implement
in the real world, the highly repetitive artificial task interrupting normal behavior
would itself appear rather odd. Very rare events collected over long time spans
could be used. This might be a possibility for overall processing capacity C
which is thought to be more or less stable but it would be difficult to capture
the momentary (and constantly changing) attention distribution via w∗p. Bayes
estimation, as we used for the analyses of this study, can work with rather few
data. At least, it explicitly captures the uncertainty that results from a low
number of repetitions and allows to formally integrate prior knowledge obtained
from earlier experiments. Hence, evidence can be accumulated in small pieces.
The parameter distributions estimated in the present study can provide a basis
for power analyses via simulations (e.g., see Kruschke, 2010). Such simulations
could help to determine how many more participants one might need when
performing TOJs under less controlled conditions and potentially with a smaller
amount of trials. A further methodological recommendation for researchers who
want to apply TOJs in the wild is to use a hierarchical version of this model
and well informed priors, at least if they are not or less interested in discovering
discrepancies (as we are) but rather want to shield off weirdness from the wild
via shrinkage and prior knowledge about typical values (Kruschke & Vanpaemel,
2015).

In the long term, research should target to model real-world tasks (e.g.,
avoiding obstacles while walking) in a similar fine-grained manner as TVA can
be used to model TOJs and similar artificial tasks. Then relevant events could
be recorded during normal behavior and submitted to model-based analysis.

Data and Videos
The data collected in the six experiments of this study can be downloaded
at: https://osf.io/sdk8r/?view_only=8aed2f9c6ca54d18b0456a4ce9662cd3. The
page also contains demo videos of all the experiments.
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A Appendix

A.1 Devices, operating systems, and browsers used in Ex-
periment 1

[1] BLN-L21 / Android 7.0 / Opera Mobile 53.1.2569
[2] Generic Smartphone / Android / Chrome Mobile 74.0.3729
[3] Generic Smartphone / Android / Chrome Mobile 76.0.3809
[4] Generic Smartphone / Android 7.0 / Chrome 77.0.3865
[5] Generic Smartphone / Android 7.0 / Chrome Mobile 76.0.3809
[6] Generic Smartphone / Android 7.0 / Chrome Mobile 77.0.3865
[7] Generic Smartphone / Android 7.0 / Firefox Mobile 68.0
[8] Generic Smartphone / Android 8.0.0 / Chrome Mobile 77.0.3865
[9] PC / Mac OS X 10.11 / Firefox 68.0

[10] PC / Mac OS X 10.13.6 / Chrome 76.0.3809
[11] PC / Mac OS X 10.14.6 / Safari 13.0.1
[12] PC / Mac OS X 10.15 / Safari 13.0.2
[13] PC / Ubuntu / Firefox 69.0
[14] PC / Windows 10 / Chrome 76.0.3809
[15] PC / Windows 10 / Edge 17.17134
[16] PC / Windows 10 / Firefox 44.0
[17] PC / Windows 10 / Firefox 68.0
[18] PC / Windows 10 / Firefox 69.0
[19] PC / Windows 8.1 / Chrome 75.0.3770
[20] Samsung SM-A520F / Android 8.0.0 / Samsung Internet 10.1
[21] Samsung SM-J510FN / Android 7.1.1 / Chrome Mobile 69.0.3497
[22] iPad / iOS 12.4.1 / Mobile Safari 12.1.2
[23] iPhone / iOS 11.4.1 / Mobile Safari 11.0
[24] iPhone / iOS 12.1 / Mobile Safari 12.0
[25] iPhone / iOS 13.1.1 / Mobile Safari 13.0.1
[26] iPhone / iOS 13.1.2 / Mobile Safari 13.0.1

A.2 Devices, operating systems, and browsers used in Ex-
periment 2

[1] Generic Smartphone / Android / Chrome 77.0.3865
[2] Generic Smartphone / Android / Chrome Mobile 77.0.3865
[3] Generic Smartphone / Android 7.1.1 / Chrome Mobile 77.0.3865
[4] Kindle / Android 5.1.1 / Amazon Silk 77.3.1
[5] PC / Mac OS X 10.13.6 / Safari 12.1.1
[6] PC / Mac OS X 10.14.5 / Safari 12.1.1
[7] PC / Mac OS X 10.14.6 / Safari 13.0.2
[8] PC / Mac OS X 10.15 / Safari 13.0.2
[9] PC / Windows / Firefox 69.0

[10] PC / Windows 10 / Chrome 77.0.3865
[11] PC / Windows 10 / Edge 16.16299
[12] PC / Windows 10 / Edge 17.17134
[13] PC / Windows 10 / Edge 18.18362
[14] PC / Windows 10 / Firefox 69.0
[15] PC / Windows 10 / Opera 63.0.3368
[16] Samsung SM-G950F / Android / Samsung Internet 10.1
[17] Samsung SM-J600FN / Android / Chrome Mobile 69.0.3497
[18] iPhone / iOS 12.3.1 / Mobile Safari 12.1.1
[19] iPhone / iOS 12.4 / Mobile Safari 12.1.2
[20] iPhone / iOS 13.1 / Chrome Mobile 78.0.3904
[21] iPhone / iOS 13.1.2 / Mobile Safari 13.0.1
[22] iPhone / iOS 13.1.3 / Mobile Safari 13.0.1
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A.3 Devices, operating systems, and browsers used in Ex-
periment 3

[1] Generic Smartphone / Android / Chrome Mobile 76.0.3809
[2] Generic Smartphone / Android / Chrome Mobile 78.0.3904
[3] Generic Smartphone / Android / Firefox Mobile 68.0
[4] Generic Smartphone / Android 7.1.1 / Chrome Mobile 78.0.3904
[5] Generic Smartphone / Android 8.0.0 / Chrome Mobile 70.0.3538
[6] Generic Smartphone / Android 8.0.0 / Chrome Mobile 78.0.3904
[7] PC / Ubuntu / Firefox 70.0
[8] PC / Windows / Firefox 69.0
[9] PC / Windows 10 / Chrome 77.0.3865

[10] PC / Windows 10 / Chrome 78.0.3904
[11] PC / Windows 10 / Edge 17.17134
[12] PC / Windows 10 / Firefox 70.0
[13] PC / Windows 10 / Opera 64.0.3417
[14] Samsung SM-A320FL / Android 8.0.0 / Samsung Internet 10.1
[15] iPad / iOS 12.3.1 / Mobile Safari 12.1.1
[16] iPhone / iOS 12.3.1 / Mobile Safari 12.1.1
[17] iPhone / iOS 12.4 / Mobile Safari 12.1.2
[18] iPhone / iOS 13.1 / Chrome Mobile 78.0.3904
[19] iPhone / iOS 13.1 / Mobile Safari 13.0.1
[20] iPhone / iOS 13.1.2 / Mobile Safari 13.0.1
[21] iPhone / iOS 13.1.3 / Mobile Safari 13.0.1
[22] iPhone / iOS 13.2 / Mobile Safari 13.0.3
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A.4 Participant-level data and predicted TOJ curves

Figure 19: Results of Experiment 1: Individual data (points) and model estimates
(curves; based on Equation 3 and the posterior modes of the C and w∗p) for the
four conditions. The numbers in square brackets identify the device and browser
used in the browser–mobile condition, referring to the list in Appendix A.1.
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Figure 20: Results of Experiment 2: Individual data (points) and model estimates
(curves; based on Equation 3 and the posterior modes of C and w∗p) for the four
conditions. The numbers in square brackets identify the device and browser used
in the browser–mobile condition, referring to the list in Appendix A.2.
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Figure 21: Results of Experiment 3: Individual data (points) and model estimates
(curves; based on Equation 3 and the posterior modes of C and w∗p) for the four
conditions. The numbers in square brackets identify the device and browser used
in the browser–mobile condition, referring to the list in Appendix A.3.
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Figure 22: Results of Experiment 4, game condition: Individual data (points)
and model estimates (curves; based on Equation 3 and the posterior modes of C
and w∗p).
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Figure 23: Results of Experiment 4, control condition: Individual data (points)
and model estimates (curves; based on Equation 3 and the posterior modes of C
and w∗p).
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Figure 24: Results of Experiment 5: Individual data (points) and model estimates
(curves; based on Equation 3 and the posterior modes of C and w∗p).
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Figure 25: Results of Experiment 6: Individual data (points) and model estimates
(curves; based on Equation 3 and the posterior modes of C and w∗p) for the two
conditions.
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A.5 Sequence analyses for the correlations reported in Ex-
periment 1 to 3

Figure 26: (a) to (c): Sequence analysis plots for the correlations of the w∗p
from the lab and mobile conditions for Experiments 1 to 3. The trajectory of
evidence accumulation is shown for each participant added (n) to the analysis.
The orange disk marks the final level of evidence.

A.6 Split-half reliability tests
Table 3–4 show results split-half reliability test. These were conducted by
creating two non-overlapping random (but balanced concerning all conditions)
sub-samples of the raw data of each experiment. These were then analyzed in
the same way as in the main analysis. Point estimates for the parameters were
obtained for each participant in each condition as the mode of the respective
posterior. These point estimates were then correlated with a Bayesian version
of a Pearson correlation (using JASP, JASP Team, 2019). The correlation
coefficient ρ is an index of the reliability. Note that in the neutral conditions
(Table 5), all variability in the w∗p estimates must be due to chance and hence
no correlation is expected for the parameter in this condition.
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Experiment C-value C-value “Wild”
Lab “Wild”
ρ 95 % HPD BF+ ρ 95 % HPD BF+

1 .62 [.39, .8] 2950 .8 [.67, .9] 6.45E+07
2 .89 [.79, .95] 2.68E+09 .8 [.64, .91] 2.07E+06
3 .84 [.71, .93] 8.85E+07 .9 [.81, .96] 5.62E+10
4 .59 [.33, .79] 393 .74 [.54, .87] 8.03E+4
5ns .54 [.26, .76] 94.8
5nl .63 [.38, .82] 1130
5as .59 [.32, .79] 294
5al .67 [.44, .84] 4160
6 .71 [.49, .86] 1.57E+04

Table 3: Split-half reliability tests for the C estimates. ρ: Pearson correlation
coefficient; 95 % HPD: 95 % Highest Probability Density interval for the ρ
estimate; BF+: Bayes Factor in favor of a positive correlation. For Experiment
5, the subscripts “a” and “n” refer to adaptive and nonadaptive, and “s” and “l”
refers to small and large SOAs.

Experiment w∗p-value w∗p-value
Salient Lab Salient “Wild”
ρ 95 % HPD BF+ ρ 95 % HPD BF+

1 .25 [.02, .52] 1.07 .13 [.01, .39] 0.26
2 .34 [.06, .63] 3.05 .52 [.23, .75] 60
3 .4 [.1, .66] 7.307 .42 [.12, .68] 11.1
4 .35 [.06, .62] 3.33 .32 [.04, .6] 2.21
5ns .71 [.49, .86] 1.41E+5
5nl .47 [.17, .72] 21.48
5as .69 [.47, .85] 8190
5al .77 [.59, .9] 3.58E+5
6 .2 [.01, .49] 0.53

Table 4: w∗p estimates (salience condition). Split-half reliability tests for the
C estimates. ρ: Pearson correlation coefficient; 95 % HPD: 95 % Highest
Probability Density interval for the ρ estimate; BF+: Bayes Factor in favor of
a positive correlation. For Experiment 5, the subscripts “a” and “n” refer to
adaptive and nonadaptive, and “s” and “l” refers to small and large SOAs.
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Experiment w∗p-value w∗p-value
Neutral Lab Neutral “Wild”
ρ 95 % HPD BF+ ρ 95 % HPD BF+

1 0.05 [0, .2] 0.08 0.13 [0, .4] 0.26
2 0.13 [0, 4] 0.25 0.2 [.01, .5] 0.6
3 0.1 [0, .36] 0.19 0.2 [.06, .5] 0.66
6 .13 [.01, .4] 0.25

Table 5: w∗p estimates (neutral condition) Split-half reliability tests for the
C estimates. ρ: Pearson correlation coefficient; 95 % HPD: 95 % Highest
Probability Density interval for the ρ estimate; BF+: Bayes Factor in favor of a
positive correlation. In neutral conditions, no correlations are expected. Not all
experiments contained neutral conditions.
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