
1

Reinforcement Learning-based Receiver for
Molecular Communication with Mobility
Lisa Y. Debus, Pit Hofmann, Jorge Torres Gómez, Frank H.P. Fitzek, and Falko Dressler

Abstract—Research in molecular communication (MC) is mov-
ing forward in big steps, enabling next-generation communication
between nanosensors and presenting an alternative communication
model for applications in life sciences and other industrial
applications. While a lot of the current research in investigates
the setup and en-/decoding process in these testbeds, few tackle
the problem of inherently mobile structures with ever-changing
channel characteristics and achieving symbol synchronization
under these circumstances. In this paper, we employ reinforcement
learning (RL) to present an approach to this problem. Using data
from a real-world macroscale testbed, we train an RL agent
to detect synchronization sequences via threshold adaption in a
mobile setting. We comparatively evaluate our approach with
the state of the art and report the RL agents ability to adapt
to changing channel behavior produced by mobility, achieving a
low probability of missed detection and small misalignment with
the symbol time.

I. INTRODUCTION

Communication among nanosensors based on molecules still
feels like fiction, but today’s lab experiments already show
that science is overcoming many of the hurdles. In particular,
macroscale testbeds demonstrate the capabilities of molecular
communication (MC) using information carriers [1], [2]. To
decode the sent messages, synchronization mechanisms are
critical to realizing digital modulation schemes. Symbol timing,
frequency, and sampling clock offset result in the main synchro-
nization errors preventing the decoding of binary information.
In the case of MC, synchronizing the receiver and the emitter
becomes particularly challenging due to random propagation
delays and the inherent distortion produced by diffusion
processes in MC channels [3]. Furthermore, nanonetworks
are inherently mobile, as MC scenarios assume a fluid medium.
Due to such mobility, synchronization mechanisms must
operate under time-varying conditions, where the MC channel
is hard to estimate, or such estimation is just impractical.

Leveraging on the extended use of machine learning (ML)
models, in this work, we report implementing a synchronizer
using reinforcement learning (RL). With the appropriate data,
RL is able to train an agent especially adept at reacting to
changing surroundings, which makes it perfect for use in mobile
scenarios [5]. In this work, we target mobile scenarios where
the transmitter moves according to Brownian motion while
the receiver is static. As a baseline, we use a macroscale MC
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Fig. 1: Molecular SISO communication testbed, see also [4].

testbed as depicted in Fig. 1. We reflect its mobility by creating
a channel impulse response (CIR) modeling the receiver’s time-
varying positions.

We train an RL model, which is deployed at the receiver, to
set the proper threshold level and detect the incoming frame
for synchronization. Our results clearly show a high probability
for correct frame detection and low symbol-time offset.

II. SYSTEM MODEL

In this work,1 we target an MC scenario with an emitter
moving according to Brownian motion and a receiver located
at a fixed position. We make use of the macroscale single-
input single-output (SISO) MC testbed as introduced in our
previous work [4]. The transmitter consists of an electronically
controlled sprayer for the mechanical release of molecules
and a reservoir of diluted Ethanol. We employ on-off keying
(OOK) modulation for data transmission. Transmission of a
1 activates the sprayer to release molecules (a total number
of 3.9 × 1021 molecules) and a 0 accounts for no release of
molecules. The molecules’ propagation from the sprayer to the
sensor is subject to additional drift. The receiver contains an
electrochemical sensor measuring the concentration level of
molecules with a sampling frequency of 5Hz.

We simulate one-dimensional mobility in our system by
moving the emitter according to Brownian motion. The
movement changes the emitter’s distance to the receiver and,
thus, the CIR of the MC channel over time. To evaluate the
spatio-temporal CIR, we collect testbed measurements for fixed
distances of 0.5m, 0.75m, 1.0m, 1.25m and 1.5m and then
interpolate the measured time series to approximate the CIR

1A longer version of this work was submitted and accepted for publication
in the Proceedings of the IEEE Global Communications Conference 2023 [6].
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Fig. 2: Average CIR of the testbed created by interpolating the recorded
measurements.

Fig. 3: Training loop used for the training of threshold setting with a mobile
emitter in the presented testbed.

for any distance between the recorded steps. Fig. 2 shows the
resulting surface of the CIR.

Each time the emitter changes its position, we evaluate the
distance to the receiver and sample the spatio-temporal CIR
surface to collect the expected number of molecules over time
on the receiver side. Using the sampled CIR, a transmission
is performed, and the transmitter moves to the next position
after all molecules were emitted.

III. RL-BASED SYNCHRONIZER

For our RL-based synchronizer, we implemented the training
loop shown in Fig. 3. In each loop, a new emitter position is
calculated based on its last position and the transmission of
one frame is performed. The distance between the new emitter
position and the static receiver is provided to the channel model
to look up the CIR. Based on this time series, the number of
received molecules per symbol is calculated and forwarded
to the decoder. The decoder uses the threshold set by the RL
agent to decode the number of molecules into a bit sequence.

A reward judging the correctness of the decoded sequence is
passed on to the agent. At the same time, the number of received
molecules and the currently used threshold are forwarded to
it as the observation for the current environment state. Using
the reward and the observations, the RL agent decides how
to adapt the threshold for the next run of the training loop
and forwards the change of the threshold via its action to the
environment. By repeatedly interacting with the environment
in this fashion, it learns to set a fitting threshold for the correct
decoding of the synchronization frame.

We implemented the described training loop as an RL
environment in Simulink and Matlab. A proximal policy
optimization (PPO) agent with recurrent neural networks (RNN)
learns the setting of the threshold with a mobile emitter. Based
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Fig. 4: Total number of received molecules in a synchronization frame and
the threshold set by the PPO agent during its transmission for the distances

of 1m, 0.5m and 1.5m.

on the reward, the agent evaluates the current threshold and
decides on the necessary changes based on the observation.

In our experiments, we pass two observations per loop to
the agent. The current threshold and the number of molecules
received during the transmission are used to describe the state
of the system. To interact with the environment, the PPO agent
produces actions which raise or lower the current threshold.
The resulting threshold is then passed as an observation to
the agent in the next simulation loop. The reward judging the
performance of the current threshold is calculated by comparing
the decoded and the source synchronization frame. Using the
success of the threshold calculated by dividing the number of
correctly decoded bits by the frame length and an additional
bonus for a completely correctly decoded frame, the reward
is calculated and forwarded to the agent together with the
mentioned observations. Based on those values, the agent
decides the threshold for the MC link for the next loop.

In our setup, we use the synchronization frame [11001]
(as follows from [7]) with a bit time of 4 s aiming to reduce
the impact of inter-symbol interference (ISI) and a sampling
rate equal to the frame rate. The start distance of the emitter
in our setup is set to 1m. To make it possible for the agent
to learn a fitting threshold, the movement of the emitter has
to be appropriately slow so that the agent is able to react
to the changed position. Based on our experiments, we were
able to determine that a diffusion coefficient of DTx = 8.4×
10−5 m2/s or lower will give the agent enough time to react
to the changed channel behavior.

The resulting RL agent was trained for 450 episodes in
which a total number of 9 × 104 transmissions of the 5-
bit synchronization frame was performed at one-dimensional
changing distances between the emitter and the receiver. Fig. 4
shows the number of received molecules for transmitted
synchronization frames and the appropriate threshold set by the
RL agent for three example distances of 1m, 0.5m and 1.5m.
The number of molecules reaching the receiver side of the
system varies significantly, and the RL-based receiver adapts
the threshold successfully.

IV. EVALUATION

In the following, we analyze the performance of the RL
method for threshold settings. The simulation parameters
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Fig. 5: Bit error rate (BER) for all transmitted bits and probability of correct
or missed detection of synchronization frame achieved by the RL agent in

104 transmissions.

used for the evaluation are set according to Section III. We
comparatively evaluate the RL agent’s performance with the
filter-based ML synchronizer as an ideal receiver (see [7, Eqs.
(7) and (8)]).

A. Probability of Missed and Correct Detection of the Syn-
chronization Frame

As shown in Fig. 5, well over 90% of the received
bits in the frames are decoded correctly. The probability of
correctly decoding the sent synchronization frame, on the
contrary is 72.16%. The implemented RL scheme is still
subject to improvements as upon evaluating the synchronization
capabilities of the filter-based ML, we find that with this method
all synchronization frames are detected correctly. This indicates
that the system is performing in a high signal to noise ratio
(SNR) environment, which may account for the lower frame
error rate (FER). While the performance of the agent must
still be improved for it to be usable in real-world systems, the
potential in using RL for threshold adaption in dynamically
changing systems is apparent.

In our results, we see ISI as a major challenge for correctly
setting the threshold for a whole synchronization frame. We
found, that especially the decoding of the 0 in the third position
of the used synchronization frame 11001 presents a problem
for the threshold setting as it is subject to high ISI from the
first two 1s in the synchronization frame. This problem is
amplified in the case of a bigger distance between the emitter
and receiver. As the CIR curve flattens with increasing distance,
the ISI increases and leads to even higher numbers of molecules
received during the first 0 of a synchronization frame.

B. Misalignment

For the misalignment of the synchronization frame, we
measure the time offset when the first bit of the sent frame
is detected correctly. A histogram showing the misalignment
using the proposed RL-based approach compared to the filter-
based ML scheme can be seen in Fig. 6. Compared to the
results for the filter-based ML scheme, our approach achieves
a lower misalignment.

The histogram shows that a majority of the transmissions
have a misalignment of 0.25 s and the start of the frame is
detected almost immediately after its transmission starts. A
second spike for the misalignment is located at 1.25 s where we
observe a steep incline in the number of received molecules at

Fig. 6: Histogram of the misalignment of 700 transmissions for the RL-based
method and the filter-based ML scheme.

this point. Due to the increased number of molecules reaching
the receiver at this point in the transmission, a threshold set to
a higher value can be crossed at this point.

V. CONCLUSION

This research manifests the applicability of RL in overcoming
the impact of mobility in MC scenarios. After training, our
approach exhibits a high detection rate and a low misalignment
for the decoded frames. In our future work, we intend to
improve upon the agent’s state observation system and add
more robust system models to make RL a possible option in
real-life deployments.
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